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ntroduction

Jump conditions to be applied across an interface
hin a viscous fluid have been explored for several
ades (Anderson et al., 1998, 2007; Aris, 1962; Delhaye,
4; Dziubek, 2011; Ishii and Hibiki, 2011; Joseph and
ardy, 1993; Slattery et al., 2007). A general form of the
tion jump (the traction is sn where s is the stress

sor and n a unit vector normal to the interface) involves
ux of momentum across the interface, a possibly

sotropic surface tension and terms including an inter-
 mass density. In pratice, the interface is often
posed to have no mass and the traction is known to

undergo a jump especially in two cases: in a shock wave,
where the flux of momentum across the interface equals
the jump of pressure; and in the presence of surface
tension defined as a capillary action due to intermolecular
forces at the interface between two immiscible fluids.

Here, we put aside the shock wave and the intrinsic
surface tension contributions. In this case, the traction
vector is usually supposed to be continuous, for example
across phase changes (Hutter and Johnk, 2004). On the
contrary, in this paper we show: first, that when a viscous
fluid with low Reynolds number crosses an interface with a
density jump the traction undergoes a jump; second that
this jump takes the mathematical form of an isotropic
surface tension that we obtain as a function of the fluid
parameters.

The question of a discontinuous traction was first
addressed in the context of solid Earth geophysics (Corrieu
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We consider a fluid crossing a zone of rapid density change, so thin that it can be

considered as a density jump interface. In this case, the normal velocity undergoes a jump.

For a Newtonian viscous fluid with low Reynolds number (creeping flow) that keeps its

rheological properties within the interface, we show that this implies that the traction

cannot be continuous across the density jump because the tangential stress is singular. The

appropriate jump conditions are established by using the calculus of distributions, taking

into account the curvature of the interface as well as the density and viscosity changes.

Independently of any intrinsic surface tension, a dynamic surface tension appears and

turns out to be proportional to the mass transfer across the interface and to a coefficient

related to the variations of density and viscosity within the interface. Explicit solutions are

exhibited to illustrate the importance of these new jump conditions. The example of the

Earth’s inner core crystallisation is questioned.

� 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Corresponding author.

E-mail address: fchambat@ens-lyon.fr (F. Chambat).

Contents lists available at ScienceDirect

Comptes Rendus Geoscience

ww w.s c ien c edi r ec t . c om

://dx.doi.org/10.1016/j.crte.2014.04.006
ease cite this article in press as: Chambat F, et al. Jump conditions and dynamic surface tension at permeable
terfaces such as the inner core boundary. C. R. Geoscience (2014), http://dx.doi.org/10.1016/j.crte.2014.04.006

1-0713/� 2014 Published by Elsevier Masson SAS on behalf of Académie des sciences.

http://dx.doi.org/10.1016/j.crte.2014.04.006
mailto:fchambat@ens-lyon.fr
http://dx.doi.org/10.1016/j.crte.2014.04.006
http://www.sciencedirect.com/science/journal/16310713
http://dx.doi.org/10.1016/j.crte.2014.04.006


F. Chambat et al. / C. R. Geoscience xxx (2014) xxx–xxx2

G Model

CRAS2A-3196; No. of Pages 9
et al., 1995). Indeed, on a time scale of millions of years,
Earth’s mantle behaves as a viscous quasi-static fluid that
enables convection due to cooling at the external surface
and to internal heat sources (decay of radioactive
elements). Transported with this movement, Earth’s
minerals undergo various phase changes due to the large
increases in pressure and temperature with depth (and
modestly, their variations with latitude and longitude). In
Earth, the major phase transitions are located at 410 and
670 km depths and are associated with � 10% density
jumps. The physics of these phase changes are complicated
as they occur across regions of partial change including a
mixture of both phases but each is sharp enough to be
modelled as a discontinuity in fluid dynamic simulations of
mantle convection. Until now, in simulations the traction
jump was supposed to be null at these interfaces
(Alboussière et al., 2010; Monnereau et al., 2010; Roberts
et al., 2007; Schubert et al., 2001; Sotin and Parmentier,
1989). Concerning the deepest discontinuity in the Earth, a
translational convection of the inner solid core within the
fluid metallic core has been predicted (Alboussière et al.,
2010; Monnereau et al., 2010). This mode relies on a mass
flux at the interface, the inner core permanently cristallis-
ing on one side and melting on the other. The plausibility of
this motion depends however on the traction conditions at
the surface of the inner core.

In the context of Earth’s convection, Corrieu et al.
(1995) noticed however that a stress continuity across a
phase jump led to inconsistencies: applying a null traction
jump did not yield the same results as solving numerically
the Stokes equations within the phase change disconti-
nuity. The authors derived the corresponding jump
condition in the special case of a spherical interface, with
linear variations of density and viscosity with depth within
the transition zone. Ricard (2007) addressed this question
again, confirmed that the traction is not continuous and
expressed its jump in the case of a plane interface and a
uniform viscosity.

The purpose of the present paper is to examine this
question in a more general framework, for interfaces of
arbitrary curvature, density and Newtonian viscosity
variations. The model is justified in the geophysical
context but can be considered as rather specific in general
fluid mechanics: it is fully dominated by viscous stresses
(small Reynolds number) and the density variations of the
background are fixed and represented by a discontinuity.
Notice however that the problem appearing in the case of a
creeping flow should also be present in the case of finite
Reynolds numbers. We show that in the case of a density
jump there must be an equivalent surface tension to ensure
global conservation of momentum, and that this tension is
given in terms of the mass transfer flux and of the density
and viscosity changes by Eqs. (25)–(26). Upon applications,
this effect may influence the inner core crystallisation.

In the next sections, we point out how the traction jump
appears in two simple cases. Then, the following section is
devoted to the expression and proof of the traction jump in
a general case: we look for weak solutions of the Stokes
equations that are smooth on either side of an arbitrarily
curved interface, and thus obtain the announced jump
conditions.

2. Existence and necessity of a traction jump

Searching the interface condition is related to the
following question: if a velocity and stress field is a
solution of the Stokes equations for a continuous but
rapidly varying density, can this solution be approximated
by the one for a sharp interface and what are the
corresponding jump conditions? We illustrate the problem
with two simple situations, first with a flat interface, then
with a curved interface.

2.1. Existence of a traction jump across a flat interface

We consider a 2D compressible, viscous, quasi-static
liquid, in steady-state regime, through the rectangular
volume �h < z < h and �p/k < x < p/k. A mass flux c0 cos
kx is injected at z = �h and extracted at z = h. To mimic a
phase transition that would occur near z = 0, we assume
that the density r(z) changes continuously from r� to r+

between z = �e and z = e and we solve for the flow y (x, y) in
the whole domain. Considering that a phase change occurs
across a very thin z-interval, this situation is expected to
close to the situation where the density changes dis-
continuously at z = 0 and where jump conditions are
implemented across the discontinuity. We show however
that the continuous approach when e!0 does not
converge to the discontinuous approach where the traction
is supposed continuous.

The Stokes equations governing a viscous linear quasi-
static fluid are:

r � ryð Þ ¼ 0; (1)

r � s ¼ 0; (2)

s ¼ � pI þ h ry þ ryð ÞT
� �

þ l r � yð ÞI; (3)

where r is the fluid density, y its velocity, s the stress
tensor, p the pressure, h and l the shear and bulk
viscosities, and I the identity tensor.

According to the first relation, ry can be sought of the
form ryx ¼ �@zC; ryz ¼ þ@xC; with the curl of relation
(2), and assuming constant h, it implies that

D r � 1

r
rC

� �� �
¼ 0: (4)

At z = � h we impose the sinusoidal vertical flux:

@zC x; z ¼ �hð Þ ¼ 0; (5)

@xC x; z ¼ �hð Þ ¼ C0 cos kx: (6)

Solutions of the form C ¼ Ĉ (z) sin (kx) are easy to find
numerically as Ĉ is the solution of a fourth order linear and
homogeneous differential system in z. Using a Runge–
Kutta method, four elementary solutions are computed in
each domain where the parameters are continuous (i.e., in
the whole domain when the density evolves continuously,
in the two subdomains z < 0 and z > 0 when the density is
discontinuous), then the general solution is found by
linearly combining these solutions, with coefficients
determined by solving the linear system corresponding
Please cite this article in press as: Chambat F, et al. Jump conditions and dynamic surface tension at permeable
interfaces such as the inner core boundary. C. R. Geoscience (2014), http://dx.doi.org/10.1016/j.crte.2014.04.006
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ee types of solutions:

 solution with a smooth but rapidly varying density r = re
ig. 1, solid black line). We choose re(z) = r– + (r+ – r–)
anh (z/e)+ 1)/2, which, for small e is close to the function

0 ¼ r�1� þ rþ1þ where 1� denotes the characteristic
nctions of the half-spaces z 5 0.

 solution with a discontinuous density r = r0 (Fig. 1,
ashed red line), a continuous mass flux (ryz) and
action at z = 0. These are the usual conditions for a flow
ossing a phase change, neglecting surface tension.

 solution with a discontinuous density r = r0, a
ntinuous mass flux and a discontinuous traction at

= 0 as proposed later in this paper.

Although the vertical velocities are visually similar
(Fig. 2, top row), the results for the horizontal velocity
(bottom row) are surprisingly different. This suggests that
the limit of a diffuse layer (solution [a], left panel) is not a
sharp interface with a continuous traction (solution [b],
middle panel) but a sharp interface with an equivalent
dynamic surface tension (solution [c], right panel).

To understand where the problem lies, we plot on Fig. 3,
the profiles of the shear stress sxz(x = p/(2k), z) (left) and
vertical stress szz(x = 0, z) (right), at x = 0. It is obvious that
the shear stress profile computed for the rapid and
continuous density change (solution [a], solid line, left
panel) looks rather discontinuous and can hardly converge
toward the smooth solution computed with the usual jump
conditions on interfaces (solution [b], blue dotted-dashed
line, left panel). The profiles for the vertical stress are
continuous but remain clearly different (right panel). The
solution computed with a continuous mass flux and a
discontinuous traction at z = 0 as proposed later in this
paper (solution [c] red dashed lines) provides clearly a
much better fit to the stresses computed with a continuous
density change (solution [a], solid lines).

This simple example, which can be interpreted as a
naive view of mantle convection with a hot mantle
crossing a phase transition in between two subducting
slabs, illustrates therefore a situation where the usual
jump conditions on interface do not hold and where the
shear stress is discontinuous on an interface without
intrinsic surface tension.

2.2. The necessity of a traction jump

Let us now explain in a heuristic way why the traction
must have a jump across a density jump with a mass
transfer. As in the example before, the interface is
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1. Left: density models used: continuous density re (black/full line)

 discontinuous density r0 (red/dashed line) as a function of z.

2. (Color online.) Velocities for the solutions as functions of x and z: top row yz, bottom row yx. Left panels: numerical solution for a diffuse interface

 re). Middle: numerical solution for a sharp interface (r = r0) by using the usual jump conditions (continuous traction). Right: numerical solution for a
p interface (r = r0) by using our jump conditions (discontinuous traction). In this example, we have taken r� = 1, r+ = 2, h = 1, k = p/5, h = 1, e = 0.03.
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considered as a layer in between z = �e and z = +e inside
which Eqs. (1)–(3) hold and all the fluid parameters vary
significantly faster in the z-direction than in the x-
direction.

The thought experiment consisting in considering
e!0 is called in most textbooks the ‘‘pillbox’’ argument.
Mathematically speaking, we start from a family of
rapidly varying but still smooth densities re, and
viscosities le and he, converging pointwise when e goes
to zero to some functions r, l and h that are possibly
discontinuous at z = 0 – which means that the limiting
sharp interface is located at z = 0. Then we assume that
with those ‘‘mollified’’ coefficients re, le, he, the 2D
Stokes equations have solutions ye converging pointwise
to y, and we look for jump conditions on y. The general
idea is that re, le, he, ye, and their x-derivatives remain
bounded in the limit e!0, whereas the z-derivative of
any of those quantities that is discontinuous in the limit
blows up as 1/e. For simplicity, we omit the subscript e in
what follows.

In 2D, the Stokes Eqs. (1)–(3) read:

@z ryzð Þ þ @x ryxð Þ ¼ 0 (7)

@zszz þ @xsxz ¼ 0 (8)

@zsxz þ @xsxx ¼ 0 (9)

sxz ¼ h @xyz þ @zyxð Þ (10)

szz ¼ � p þ 2h@zyz þ l @xyx þ @zyzð Þ (11)

sxx ¼ � p þ 2h@xyx þ l @xyx þ @zyzð Þ: (12)

Eq. (7) readily shows that ryz must remain continuous
in the limit e!0 (otherwise, @x(ryx) = �@z(ryz) would
blow up). If we denote by v b the jump of a quantity across
the interface, this usual jump condition reads vryzb ¼ 0. By
the same argument, the usual jump conditions are
obtained by considering that equations (8) and (9) imply
vszzb ¼ 0 and vsxxb ¼ 0, respectively, provided that @xsxz

unlikely to hold true if the mass transfer flux ryz is
nonzero. Indeed, subtracting (11) to (12) we obtain

sxx ¼ szz þ 2h @xyx � @zyzð Þ: (13)

The important point is that the vertical velocity
becomes discontinuous when the thickness e!0 and that
@zyz blows up. As suggested by Fig. 3, szz remains bounded
(and continuous) and as @xyx is also bounded, sxx must
blow up too. In (9), the two terms blow up as 1/e and one
cannot infer that vsxzb ¼ 0 anymore.

To derive the appropriate jump, we use (9) and (13) and
find that

@zsxz ¼ �@xsxx ¼ �@xszz � 2@x h @xyx � @zyzð Þð Þ (14)

In the right-hand side, only the term in @zyz is singular in
the limit e!0, thus by integration across the layer (Anderson
et al., 1998) on a height 2d such that e � d � 1 we get vsxzb ¼
2lime ! 0@x

R d
�d h@zyz dz: With the mass conservation (7) it

implies vsxzb ¼ �2lime ! 0@x

R d
�d h @zrð Þyz=r dz or since ryz

is continuous:

vsxzb ¼ �2@x rvz lim
e ! 0

Z d

�d
h @zrð Þ=r2 dz

  !
: (15)

This can be written

vsxzb ¼ 2@x vnbryzð Þ (16)

where

vnb ¼ lim
e ! 0

Z d

�d
h@zð1=rÞ dz (17)

is the jump of the function
R
h@z 1=rð Þ dz: Notice that vnb

involves variation of parameters within the interface
although it can be written as a jump.

The jump conditions for a plane interface are there-
fore:

vryzb ¼ 0 vszzb ¼ 0
vyxb ¼ 0 vsxzb ¼ 2@x vvbryZð Þ: (18)

With a constant viscosity within the interface we
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Fig. 3. Left: normal stress sxz at kx = p/2 as a function of z. Right: normal stress szz at x = 0 as a function of z. In each panel, the three curves are for a

continuous density re (black line), a discontinuous density and continuous traction (blue), a discontinuous density and discontinuous traction (red). Same

parameters as on Fig. 2. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article).
get vnb ¼ hv1=rb, and since the first relation implies
and @xsxx be bounded. However, the latter assumption is
Please cite this article in press as: Chambat F, et al. Jump conditions and dynamic surface tension at permeable
interfaces such as the inner core boundary. C. R. Geoscience (2014), http://dx.doi.org/10.1016/j.crte.2014.04.006
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rbryz ¼ vyzb the fourth equation also reads vsxzb ¼
hvyzbð Þ: The correct jump condition yields v@zyxb �
zb ¼ 0 while the traditional condition vsxzb ¼ 0 implies

xb þ @xvyzb ¼ 0!

According to (13), sxx becomes infinite in the limit e!0.
ng the same kind of integration as for the proof of (16),
integral across the infinitely thin interface is

 lim
e ! 0

Z d

�d
sxx dz ¼ �2vnbryz: (19)

 therefore a force per unit length, a tension embedded in
 interface, similar to the surface tension on the interface
mmiscible fluids. As for the Marangoni effect (Pearson,
8), the fourth relation of (18) yields a traction along the
rface that is proportional to the surface tension

dient: vsxzb ¼ �@xs. However, s is not an intrinsic
perty of the interface, but a dynamic property of the
.

When the flow crosses a density interface, the pillbox
ument cannot be used without including lateral

s because, in the same way as in the presence of
insic surface tension (Anderson et al., 1998), the
ral stress diverges when the pillbox shrinks and thus

 lateral integrals do not vanish in the zero-height
it.
To summarize, we expect that for a viscous fluid (h 6¼ 0)
h mass transfer at the interface (ryz 6¼ 0), both p and sxx

ome singular – like across an interface endowed with
insic surface tension – while ryz and yx are continuous,
 the other stress components sxz and szz may have
ps (for a flat interface, the latter is not affected by

face tension).
As we have seen that a rapid density change implies the
stence of an equivalent surface tension, we should now
ify that the normal stress discontinuity occurring across
urved interface (the Young–Laplace condition) is also
id in the case of a rapid density change.

 Existence of a traction jump across a curved interface

We consider a simple flow diverging from a point
rce with radial velocity y ¼ y rð Þr̂, with a density r (r)
ying rapidly from r� to r+ across a shell located
ween the radii R � d and R + d. In this spherically
metric situation the solution of Stokes equations is

n more surprising since we can prove analytically
d very simply) the existence of a dynamic surface
sion. Indeed, with h = h (r) and l = l (r), the only
zero stress is srr ¼ � p þ 2h@ry þ l@r r2y

� �
=r2 and

¼ sff ¼ � p þ 2hy=r þ l@r r2y
� �

=r2 and the equili-
m equation yields

rr þ 4h@r
y
r

� �
¼ 0: (20)

The mass conservation equation implies

¼ C

r2
(21)

where C is a constant. By combining these two equations
we get

@rsrr þ 4h
ry
r

@r 1=rð Þ � 12h
y
r
¼ 0: (22)

The last term is bounded, ry/r is continuous, therefore
by integration across the discontinuity

vsrrb ¼ �4
ry
R

lim
e ! 0

Z Rþd

R�d
h@r 1=rð Þ dr ¼ 2s

R
: (23)

As in the Young–Laplace law, the jump of normal stress
is not zero but proportional to the total curvature 2/R and
to the surface tension which is here �2vnbry, in agreement
with what we found across a flat interface. This effect may
be large, as the jump 2s=R � 4hv1=rbry=Rð Þ and the viscous
stress � hy=Rð Þ have similar magnitudes. In this example,
that can be seen as a naive view of the crystallising inner
core, the usual jump conditions on interface also do not
hold, and the normal stress is discontinuous on an
interface without intrinsic surface tension.

3. Jump conditions

3.1. Statement of jump conditions

We now give the general jump conditions for a general
3D fluid having a curved interface. We consider a fluid
verifying eqs. (1)–(3) everywhere, and undergoing a
density jump when crossing a static surface
S ¼ x q3 ¼ 0

��	 

, with q3 a local coordinate normal to the

surface. We suppose that this mathematical surface
corresponds physically to a very small layer in which
the Stokes equations remain valid. We neglect intrinsic
surface tension on the interface S. The jump of any
piecewise-smooth quantity f across the interface at x 2 S is
defined as v f b ¼ fþ � f� :¼ lime ! 0þ f x þ enð Þ �
lime ! 0þ f x � enð Þ where n denotes the unit normal to
the interface at point x and pointing towards positive q3. In
addition, we use the subscript T for the tangential part
yT ¼ y � y � nð Þn of a vector field y on S. Accordingly, rT

and rT � stand for the tangential gradient and tangential
divergence on S (Slattery et al., 2007). Then in particular,
k ¼ rT � n is the sum of principal curvatures of S. The main
result of the paper is that, apart from the usual jump
conditions

vry � nb ¼ 0; vyT b ¼ 0; (24)

we have

vsnb ¼ skn � rT s; (25)

i.e. the traction jump has exactly the same form as in the
case of (intrinsic) isotropic surface tension (Joseph and
Renardy, 1993), but here s is a dynamic surface tension,
given by

s :¼ � 2vnbry � n (26)

where vnb is the jump of the function
R
h@q3 1=rð Þ dq3. This

quantity is homogeneous with a kinematic viscosity and
depends on variations of both r and h ‘‘inside’’ the interface
and ry � n is the mass flux across the interface. We have
ease cite this article in press as: Chambat F, et al. Jump conditions and dynamic surface tension at permeable
terfaces such as the inner core boundary. C. R. Geoscience (2014), http://dx.doi.org/10.1016/j.crte.2014.04.006
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introduced the minus sign in eq. (26) in agreement with
the usual convention sign of the surface tension in (25).
The important point is that this dynamic surface tension is
not intrinsic but a function of the fluid parameters and of
the mass flux. We recover what was found in particular
cases (Corrieu et al., 1995; Ricard, 2007); indeed with the
useful relation:

v
1

r
b ry � n ¼ vy � nb (27)

and in the case of uniform viscosity for example (Ricard,
2007), we get vnbry � n ¼ h vy � nb.

The usual jump conditions on a phase change interface
consist of eq. (24) together with vsnb ¼ 0 (Hutter and
Johnk, 2004). The latter is recovered from (25) when the
dynamic surface tension s vanishes identically, which is
the case for an impermeable interface (thus with null mass
flux) or if the density is uniform. The traction continuity is
recovered too when the interface is flat and the dynamic
surface tension s is uniform.

For the sake of simplicity, inertia, surface forces, surface
mass density and any a priori intrinsic surface tension have
been neglected. These effects are taken into account by
well-known jump conditions (Slattery et al., 2007). The
main result of the paper is that without any intrinsic
surface tension there still exists another surface tension,
but of a dynamic origin, which is explicitely given as a
function of the fluid parameters by (26).

3.2. Proof of jump conditions

Finding the jump conditions amounts to investigate the
(very) weak solutions to the Stokes equations which are
expected from a passage to the limit e!0 as in Section 2.2.
For that purpose we look for jump conditions on solutions
of (1)–(3) in the sense of distributions, with discontinuous
coefficients r, l, h across a smooth surface S.

We denote by c(x) the signed distance of the point x to
the surface. The equation of the surface is c(x) = 0, and in a
vicinity of the surface c satisfies the eikonal equation
rc xð Þk k ¼ 1 and defines the unit normal n :¼ rc xð Þ. We

denote by x1, x2, x3 = x, y, z the Cartesian coordinates of x,
and we adopt the usual convention of summation over
repeated indices. For convenience we rewrite the eq. (2)
with indices:

@ j � p þ l@iyið Þ þ @i h @iy j þ @ jyi

� �� �
¼ 0; j 2 1; 2; 3f g; (28)

or, in short, as L(p, y) = 0 where L is the Stokes operator

p; yð Þ 7! L p; yð Þ :¼ r � p þ lr � yð Þ þ r

� h ry þ ryð ÞT
� �� �

: (29)

A usual method to get jump conditions is to find the
discontinuous solutions of the corresponding operator
(Bedeaux et al., 1976). Thus, we assume that the velocity
field is of the form

and that the pressure term is of the form

p ¼ p�1� þ pþ1þ þ Pd; (31)

where y�, p� are smooth functions of x on the half-spaces

x ¼ x1; x2; x3ð Þ; c xð Þ � 0f g; x ¼ x1; x2; x3ð Þ; c xð Þ 	 0f g;
(32)

while 1þ :¼ 1c� 0 and 1� :¼ 1c� 0 denote the character-
istic functions of these half-spaces, d ¼ d cð Þ stands for the
Dirac mass on their separating surface S, and P is a smooth
function of x on S and its vicinity.

In what follows, we repeatedly use the following
calculus formulas (Bedeaux et al., 1976; Gel’fand and
Shilov, 1968, chap. 3.1):

@ j1� ¼ � @ jc
� �

d; @ jd ¼ @ jc
� �

d0; (33)

where the latter follows from the definition of the surface
distribution d0 ¼ d0 cð Þ.

Then, the derivatives of p and y in the sense of
distributions are

@ j p ¼ @ j p�
� �

1� þ @ j pþ
� �

1þ þ v pb @ jc
� �

d

þ P @ jc
� �

d0; (34)

@ jy ¼ @ jy
�� �

1� þ @ jy
þ� �

1þ þ vyb @ jc
� �

d: (35)

For convenience, we extend y� in a smooth manner to
the other sides of S, so that the jump vyb is extended to a
smooth function in the vicinity of S, merely defined as
vyb ¼ yþ � y�. In the same way we extend p� and P.

For the sake of clarity, we start with l and h continuous
across the interface and postpone our more elaborate
calculation intended for general interfaces to the next
section.

3.2.1. Continuous rheology

Let us first derive jump conditions in the special case
when all products in (28) are well defined, that is,
assuming that both viscosities l and h are regular, and
more especially constant across S.

Differentiating once more in the sense of distributions
and using @ jc ¼ n j and (33) we find that the Stokes
equations L(p, y) = 0 are equivalent to L(p�, y�) = 0 and m(p,
y) = 0, where m(p, y) is the vector-valued distribution
supported by S whose components are

m j p; yð Þ ¼

�v pbn jd � @ jP
� �

d �Pn jd
0

þvl@iyibn jd þ@ j vlyibnið Þd þvlyibnin jd
0

þvh@iy jbnid þ@i vhy jbni

� �
d þvhy jbninid

0

þvh@ jyibnid þ@i vhyibn j

� �
d þvhyibn jnid

0
;

(36)

where we intentionally leave l and h inside the jumps to
insist on the fact that it must be evaluated at c ¼ 0.

Now we use that for any smooth functions a(x) and b(x),
the equality ad + bd0 =0 is equivalent to b = 0 and a ¼ n j@ jb

on the interface S (here, d0 ¼ n j@ jd is a normal derivative,
eq. (33), so that ad þ bd0 applied to any test function f, is the
value of a f � @ j n jb f

� �
¼ a � b@ jn j � n j@ jb
� �

f � bn j@ j f

taken on the interface). In this paper, b will represent

functions defined on the interface only, thus their
y ¼ y�1� þ yþ1þ; (30)
Please cite this article in press as: Chambat F, et al. Jump conditions and dynamic surface tension at permeable
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ension outside S does not play any role and we can
ume, for convenience and without loss of generality,
t their normal derivative is zero. Thus, ad þ bd0 ¼ 0 will
equivalent to b = 0 and a = 0 on S (Bedeaux et al., 1976,
endix A).

Thus, collecting the d0 terms of (36) and equating their
 to zero, we infer that

j ¼ vly � nb n j þ vhy jb þ vhy � nb n j (37)

the interface S. Provided that h 6¼ 0, this relation implies
t vyb must be parallel to n. In other words, the tangential
ocity must be continuous when viscosities are so, and
n we merely have

 v l þ 2hð Þy � nb (38)

S. Then, all terms in factor of d in mj(p, y) must cancel
, which leads to

 ¼ �v pbn j þ vlr � ybn j þ vhð@iy j þ @ jyiÞbni

j vly � nbð Þ þ @iðvhy jbniÞ þ @i vhyibn j

� � (39)

snb j þ @ j vly � nbð Þ þ @i vhy jbni

� �
þ @i vhyibn j

� �
: (40)

Eliminating @ jP using (38), we obtain

b j ¼ @ j 2vhy � nbð Þ � @i vhy jbni

� �
� @i vhyibn j

� �
: (41)

We take the inner product of this equation by the
mal n. Various simplifications occur as n is a unit vector,
he surfaces c(x) = cst are parallel and as vyb is parallel to

i ¼ 1; ni@in j ¼ ni@i@ jc ¼ ni@ jni ¼ @ j ninið Þ=2

¼ 0; vyib ¼ vy � nbni; (42)

 we find

nÞ � nb ¼ �2vhy � nbk (43)

ere k is the sum of principal curvatures of S:

 @ini ¼ Dc: (44)

Now, taking the inner product of (41) by any tangent
tor T ? n, and using again vyib ¼ vy � nbni we arrive at

nÞ � Tb ¼ @ j 2vhy � nbð ÞT j � 2@i vhy � nbnin j

� �
T j; (45)

which the last term vanishes because ni@inj = 0 and
= 0. Hence the other jump condition

nÞ � Tb ¼ 2@T vhy � nb: (46)

Since T is any tangent vector, the relations (43)–(46)
cide with (25)–(26) when n = h/r (which is indeed the

e when h = cst). Of course (43)–(46) also reduces to (18)
a flat interface (k = 0) and to (23) for a spherical
metry (k = 2/R).

2. Discontinuous rheology

Let us now extend this computation to possibly
ontinuous viscosities. As a consequence, the distribu-
s l@iyj and h@iyj in (3) are not well defined (product of
eaviside function by a Dirac mass at its point of
ontinuity).

To overcome this difficulty, we first observe that by the
mass eq. (1), we have vry � nb ¼ 0 across S. This is the most
classical, Rankine–Hugoniot jump condition, which can
easily be recovered by the method used above for instance.
If r is genuinely discontinuous, this implies that y � n also
has a discontinuity across S, and as a consequence the
distribution @n y � nð Þ :¼ n � r y � nð Þ ¼ ni@i n jy j

� �
¼ nin j@iy j

involves a Dirac mass. However, we also notice that

@n y � nð Þ ¼ 1=rð Þ@n ry � nð Þ þ ry � n@n 1=rð Þ; (47)

where the first term is a ‘‘harmless’’ discontinuous
function, and the second is the product of a continuous
function by a Dirac mass. Therefore, defining l@n y � nð Þ and
h@n y � nð Þ is equivalent to giving sense to the products
l@n 1=rð Þ and h@n 1=rð Þ. This can be done thanks to a
modeling argument, which goes as follows. By referring to
the diffuse interface point of view described in Section 2.2,
we allow ourselves to replace l@n 1=rð Þ and h@n 1=rð Þ by
some normal derivatives, say @nm and @ny, respectively.
Note that in the special case when both l and h are given as
functions l ¼ ‘ 1=rð Þ, h ¼ h 1=rð Þ of 1=r, it suffices to take
m ¼ L 1=rð Þ and y ¼ H 1=rð Þ, where L and H are
antiderivatives of ‘ and h, respectively. Then we define
those products by

l@n y � nð Þ ¼ l=rð Þ@n ry � nð Þ þ ry � n@nm;
h@n y � nð Þ ¼ h=rð Þ@n ry � nð Þ þ ry � n@nn;

(48)

in which each term is meaningful since ry � n ¼ 0. Now,
write m ¼ m�1� þ mþ1þ and n ¼ n�1� þ nþ1þ, we deduce
from (33) and (48) that

l@n y � nð Þ ¼ l�@n y� � nð Þ1� þ lþ@n yþ � nð Þ1þ þ vmry � nbd;
h@n y � nð Þ ¼ h�@n y� � nð Þ1� þ hþ@n yþ � nð Þ1þ þ vn py � nbd;

(49)

where again we leave ry � n inside the jumps to insist on
the fact that it must be evaluated at c ¼ 0.

Still, the mass equation does not give any information
on the tangential velocity yT so that the corresponding
products h@n yTð Þi in the stress eq. (3) are not well defined
either. As we have seen before, the continuity of tangential
velocity across S is a consequence of the stress equation
when h itself is continuous. Otherwise, we have to assume

the continuity of tangential velocity in order to deal with
the related products in (2). Thus, we assume that the
tangential velocity is continuous, that is vyT b ¼ 0 across S
to avoid undefined products. In this way, the products
l@jyi and h@jyi are not singular, except for the component
on njni that is given by (49). Thus, we deduce that

l@ jyi ¼ l� @ jy
�
j

� �
1� þ lþ @ jy

þ
i

� �
1þ

þ vm ry � nbn jnid;

h@ jyi ¼ h� @ jy
�
j

� �
1� þ hþ @ jy

þ
i

� �
1þ

þ vn ry � nbn jnid;

(50)

In case l = cst, we do not need to introduce m, and the
jump formula above and below are valid with l/r instead
of m [it suffices to apply (35) to y � nð Þ and multiply by l]. In
the same way, if h = cst we can just replace y by h/r.
ease cite this article in press as: Chambat F, et al. Jump conditions and dynamic surface tension at permeable
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With these relations we find that the vector-valued
distribution m(p, y) has components

mj p;yð Þ ¼

�v pbnjd � @ jP
� �

d �Pnjd
0

þvl@iyibnjd þ@ jðvmry � nbÞd þvmry � nbnjd
0

þvh@iy jbnid þ@i vnry � nbnjni

� �
d þvnry � nbnjd

0

þvh@ jyibnid þ@i vnry � nbninj

� �
d þvnry � nbnjd

0
:

(51)

This expression corresponds to the continuous case if
we replace m and y with l/r and h/r and use (42). Now,
m(p, y) = 0 readily implies (collecting d0) that

P ¼ v m þ 2nð Þry � nb; (52)

which generalizes (38), and (collecting d)

@ jP ¼ vsnb j þ @ jvmry � nb þ @i v2nry � nbnin j

� �
; (53)

hence by eliminating P,

vsnb j ¼ @ jv2nry � nb � @i v2nry � nbnin j

� �
: (54)

Further reductions using that k = @ini and (42) yield the
expected jump conditions

v snð Þ � nb ¼ �2vnry � nbk; v snð Þ � Tb

¼ 2@T vnry � nb for all T ? n: (55)

Of course they coincide with (18) in the flat case, with
(23) in the spherical symmetry, and with (43)–(46) when
h = cst (just replace n with h/r). They also coincide with
(25)–(26) since T is any tangent vector.

4. Conclusion

Situations involving a mass transfer across a density
jump occur every time a phase change takes place. This
occurs in planetary mantles and on the solid-liquid
interface of their metallic cores. It occurs also in any
situation with phase change or chemical reaction
(although in various case a non negligible inertia would
have to be taken into account). We have pointed out that a
mass transfer across an interface with a density jump is not
compatible with a continuous traction vector for a
Newtonian fluid. We have illustrated with two simple
cases how the new jump conditions appear and shown that
the correct conditions lead to a fundamental change in the
solutions of the Stokes equations (see Fig. 2). We have
derived a jump condition for the traction (25) in terms of a
dynamic surface tension, defined in (26) as the opposite of
twice the product of the mass transfer ry � n by a
coefficient vnb depending upon the variation of density
and viscosity within the interface. This yields Young–
Laplace and Marangoni effects though with a different kind
of surface tension.

In a linear elastic solid, we guess that similar arguments
would lead to analogous expressions for the jumps, with
the displacement instead of the velocity, and the elastic
moduli instead of the viscosities. For example seismic
propagating and stationary waves could be affected by
these jumps at phase change boundaries in the Earth. In
the same way, shock waves involve a sharp density

discontinuity crossing particules and thus a dynamic
surface tension should be considered.

The existence of an infinitesimally thin surface across
which a density change occurs is a mathematical
idealization. Physically, the transformation takes necessa-
rily place within a finite width. Is it possible to estimate the
value of the coefficient vnb entering in the equivalent
surface tension? It depends upon the evolution of h and r
within the transition layer. For a univariant phase
transition, the interface is a layer of a few molecules
depth across which these quantities may not be easy to
define, but our approach hypothesizes that the rheology
remains viscous and Newtonian. The parameter vnb should
thus be directly deduced from experiments. For multi-
variant phase changes like those occurring in a planet
(where each silicated phase hosts several type of metallic
cations), transitions occur in coexistence regions of 5–
30 km width. In this case, the mathematical interface really
represents a macroscopic layer of a few % of the planetary
radius across which density and viscosity are perfectly
defined and could be measured in laboratory experiments.
At any rate, the parameter vnb cannot a priori be expressed
as a function of the density and viscosity values on each
side of an interface except in some particular cases. If the
density is constant across the interface we have of course
vnb ¼ 0. In this case or if the mass transfer is null, the usual
continuity of the traction is recovered. If the viscosity is
uniform then vnb ¼ hv1=rb. We can also show that if the
specific volume 1/r is an increasing function of q3, and
h > 0, then inf hð Þv1=rb 	 vnb 	 sup hð Þv1=rb: If h and 1/r are
linked by a linear relationship then vnb ¼ 1

2 h� þ hþð Þv1=rb:
In all these cases, the smaller the jump of specific volume,
the smaller the effect of this new jump condition.

Finally, note that if we write the stress field as s ¼
s�1� þ sþ1þ þ Sd; and use eqs. (3), (50), (52), we show
that the singular part reads S = sPT where PT :¼ I � n
n
denotes the orthogonal projection onto the tangent space
to the interface. Thus, S is isotropic on the tangent space
and verifies the usual properties of a surface tension
(Slattery et al., 2007): it is a tangential tensor (i.e. a tensor
that maps tangent vectors to tangent vectors) that
represents the singular part of the stress tensor and that
imposes a traction jump vsnb ¼ �rT � S: The difference
between an intrinsic surface tension and the dynamic
surface tension S is that the latter is proportional to the
mass transfer across the interface.

It is beyond the scope of this paper to explore all the
consequences of the dynamic surface tension but let us
only notice that it might substantially influence inner core
convective models results. Indeed the inner core transla-
tional convective mode (Alboussière et al., 2010; Mon-
nereau et al., 2010) relies on the fact that y = cst is a
solution of Stokes equations together with (sn)T = 0 at the
boundary. On the contrary, with y = cst the new condition
(25) implies

rT vnbry � nð Þ ¼ 0: (56)

At the first order vnb and r involved in this equation can
be considered laterally constant and this condition means
that n makes a constant angle with the fixed direction y.
Please cite this article in press as: Chambat F, et al. Jump conditions and dynamic surface tension at permeable
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in
 surfaces satisfying this condition are called ‘‘constant
le surfaces’’ and this is obviously not the case of a
ere. Thus the translation is not a solution of the Stokes
ation in the inner core with a permeable surface

olving a dynamic surface tension.
In a forthcoming paper, we intend to generalize the
ult presented here by relaxing the hypothesis of low
nolds number. In this case we show that, in the jumps
ditions reported above, first we must replace the
mal velocity by the relative normal velocity to the
rface and second add the classical jump of momentum
earing in the Rankine–Hugoniot conditions.
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