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Abstract

The gravity potential of a planet is usually expanded up to first order only as a linear function of topography and lateral
variations of density. In this article, we extend these expressions up to second order and we estimate the magnitude of the new
non-linear terms. We find that they are not negligible when compared to observed values: tens of metres for height anomalies
and tens of milligals for gravity anomalies. Therefore, second-order expressions should be taken into account when inverting
global gravity data.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction As the sum of the terms involved in the first-order
gravity potential nearly cancel, we may wonder what
In order to interpret the observed gravity potential the magnitude of the second-order terms is. The aim of
anomalies of planets, the potential is usually expressedthis article is to answer this question. First, we give the
as a linear function of the lateral variations of density expression ofthe potential complete to the second order
and topography. These relations are first-order approx- in topography and lateral density variations (Sections
imations in the vicinity of a spherical reference. It has 2-4). Second, we give a numerical estimation of the
long been observed that the Earth gravity anomalies second-order terms and compare their magnitude with
are much less than those due to the external topogra-the observed gravity and potential (Sect&)n
phy only; this is the consequence of the isostatic com-  Non-linear evaluations of the potential have already
pensation, which results in a quasi-cancellation of the been considered@®almino (1994has given the expres-
external topography contribution with that of the Moho. sion of the potential of an homogeneous body up to
second order in its topography and has applied it to

Ao PhobosMartinec (1994has used similar expressions
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the potential of models given on a spatial gtid:et al.
(1996)have proposed an algorithm based on a division
of the model in spherical cellKaban et al. (1999 ave
computed the potential of an isostatic lithosphere, and
Belleguic (2004)have computed Mars gravity field.
However, none of them has given the general expres-
sion for the second-order potential, or has made any
comparison with the observed values for the Earth.
In particular, the coupling of the hydrostatic shape

with non-hydrostatic structures has not been evaluated.

High-order calculations of the gravitational potential
have been performed in planar geometrydiglenburg
(1974)with a method due tBarker and Huestis (1974)
and byOckendon and Turcotte (1977)

In geodesy, similar calculations have been per-
formedto precisely estimate the geoid from the external
potential, which only involves the masses that lie out-
side the geoid. For exampl8joberg (1995, 1998a,b)
Nahavandchi and 8berg (1998) and Rapp (1997)
have pointed out the importance of the second and third
order in topography. But basically, the problem in geo-
physics is to fit the external potential with an internal

mass model and not, as in geodesy, to precisely deter-

mine the shape of the geoid.

In a previous work, we have estimated the perturba-
tions of Earth’s mass and iner{i@hambat and Valette,
2001) The present article can be considered as its com-
plement to higher harmonic degree coefficients of the
potential. We use the same notatiobss the mean ra-
dius of the EarthG the gravitational constanp the
density field, and, 9, A are the spherical coordinates
(radius, colatitude, longitude).

2. Expression of the gravitational potential

Outside a planet, the gravitational potengias har-
monic and can be written

oo )2
o 0. 0)=> >

(=0m=—¢

+1
(2) womren.

The Y are the spherical harmonics defined in
Appendix Aand the coefficientg}’ (b) depend on the

density as
op(b) = — p(r, 6, 1)r' Yy (6, 1) dV,

)

),
¢+ 1)ptt
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whereV is the Earth’s volume. Note that our sign con-

vention is such that the gravity vector-isggrady. We

denote byg}' the integral with which we will deal

throughout the article:

o = [ pteontypen)av. 3)
|4

The low degree coefficients are easy to interpﬁ@ﬁs

the Earth’'s masa/, the¢]' are related to the position

of the centre of mass, and tlgg' are related to the

inertia tensor.

Most of the time, the integral i(B) is expressed to
first order as a linear function of lateral perturbations of
density and topography. Our purpose is to extend these
expressions up to second order. Note that the potential
is linear in density and that the non-linear terms arise
from the non-spherical shape of the interfaces.

After having subtracted a reference potential, such
that of a hydrostatic quasi-ellipsoid, two quantities are
usually derived fromp. First, the height anomaly is
defined by

o(r=>0,0,1)
g b

whereg is the norm of the reference gravity at the sur-
face:

GM

b2

£(6, 1) = (4)

4
= —nGpab,

5

. (5)
and p» is the mean density. Correct to first order,
represents the height of the equipotential, i.e. the geoid
undulation, above the surface of reference. Second, the
gravity anomaly is defined by

g:

ad
3g(6, A) = (ar
which, correct to first order, is the free air anomaly.
Although these interpretations are correct to first or-
der only,¢ anddg constitute an easy and classical way
to represenp (Heiskanen and Moritz, 1967; &jerg,
1995; Rapp, 1997)'he spherical harmonic decompo-
sitions of these relations lead to

9y (b) gy

g’ g
Owing to coefficient! — 1 in Eq. (7) defining §g}’,
maps of gravity anomalies provide finer details than
maps of height anomalies do.

+ f) o(r=0b,0, 1), (6)

= - @)
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We can rewrite relation§’) as functions ot (3)
andpz (5):

TR / N /1 ®)
T e+ 1)pIM T Ar(2e + 1)bH2py°
g (2U+1p'M T An(20 + 1)btH3py
It yields
o 3gr | S8t
L _ 206 4 326
o =M ( ¢ b
4 8y N
_ A oo’ (2& + 3”) . (10)
3 g b

3. Shape perturbations

In order to evaluatgy’ we make use of the shape
perturbation formalism and the notations given in
Chambat and Valette (20Q1)n this approach, the
Earth is related to the reference model by a continu-
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Fig. 1. Notations used to define the reference configuration. The
surfacesSwhich extrapolate the Earth interfaces have mean radii
The pointsx of Sare referenced by the poingson the spheres of
radii r. £ = x — a is the radial Lagrangian vector between the two

ous deformation. Then the physical parameters of the configurationse is the colatitude and the longitude.

Earth can be derived from those of the reference model

through a Taylor expansion. This defines the perturba-
tions to the different orders. In this section, we recall

some notations and relations of this perturbation for-
malism.

3.1. Lagrangian and Eulerian perturbations

First, we define a mean model as @©hambat
and Valette (2001)we choose a continuous strati-
fication of surfacesS extrapolating the interface¥
and we define the mean radius of a given surface
by r. Each pointx(r, 6, A) of S with density p(x) in
the Earth is then related to a poiafr, 6, A) with
density po(r) in the mean modelFg. 1), this refer-
ence density being defined by angular averaging of
p(x).

Second, the virtual deformation of the Earth domain
is parameterized by a scafiaranging from 0, for the
reference configuration, to 1, for the Earth. We thus

consider the following mapping:
Y(a,t) € Vo x [0, 1] — x(a,t) € V;, (112)

with Va € Vg, x(a,0) =a, x(a,1)=x and V,—o =
Vo, Vi=1 = V. For any regular tensor fielfl, we can

consider the mappingu(¢) — T(x(a, 1), t). The La-
grangian displacement of ordeis defined by

: (12)
=0

d”
‘En(a) = @x(a, t)

and the Eulerian, respectively, Lagrangian, perturba-
tions of ordem of T by

SneT(a) = 8—T(x(a, 1,0 (13)
ar" =0
dn
SuT(a) = ——T(x(a,1),1) (14)
dr” t=0
As a consequence:
Snex =0 and §,x =§,. (15)
Definingé, . T and§ T, respectively, by
x(a, 1) = a + &(a), (16)
T(a,1)= T(a,0)+ 5.T(a), a7)
T(x(a,1),1) = T(a, 0)+ & T(a), (18)
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a Taylor expansion to ordé¥ yields

N o1
ba) =) -~ & () (19)
n=1"""
N o
8.T(@) = ~neT(a), (20)
n=1 "
N o1
§T(@)=> T (@) (21)
n=1

3.2. First-order relations

Consider now a scalar fiefcand a vector field:. It
is easy to show that, to first order

Suf =081.f +gradf - &, (22)
su(divu) = div(Syu) — tr(Vu - VE;), (23)
su(gradf) = grad@i. f) + VV(f)&;. (24)

where the second-order tensd®mu is the covari-
ant derivative ofu: (Vu);; = Vju;; tr(Vu - V&) is
the trace of the tensowvu - V&; with components
Viu! ng’l‘, andV V() is the Hessian dfwith compo-
nentsViij.

3.3. Perturbations of integrals

First, let us denote bys the mean radius of an inter-
face X, by n the unit vector normal t& and pointing
outward, and by f] = f(rL) — f(rx) the jump off at
the interface in accordance with the orientatiom off
a scalar field, or a vector fieldu, has a jump across
the interfaces, an integration by parts gives

/u~gradde

14

:—/fdiVudV—/[fu-n]dE, (25)
14 b

where [ involves all interfaces, including the external
surface, and where, as a matter of fggtinvolves only
V\ X where gradf and divu are well defined.

To first order, the perturbation of a volume integral
F= [, f(x)dV,is given by

SF = 81F = Blede—/[fgl-n]dE, (26)
Vo >0

SF=80F= /V (Suf + fdivé)dy, 27)
0
and to second order by
8F = 81.F + %62.7: (28)
with
§2F = : {02 f + 26u f divé; + f(divEy
0
+ (div £1)* — tr(VE; - V&) dV. (29)

Relationg26) and (27)re classical in continuum me-
chanics. The proof of27) relies on the fact that, to
first order, the relative change of an elementary vol-
ume streamed by the deformation is &jv The link
between(26) and (27)is provided by(22) and (25)
Applying (27)twice and using23)yields(29). Finally,

as

(div §1)® — tr(VE; - V&)
= div (§; divE; — VE1(£1)),
(29) can be rewritten

(30)

5o F = 8o f + 281, f divE,

Vo

+ fdiv{& + & dive; — VE(§)]} dV. (31)

4. Perturbation of potential

The perturbation relations can now be applied
to Eg. (3) in order to evaluate the perturbation of
the gravitational potential. As the shape perturba-
tions correspond to a purely mathematical setting,
we are free to choose the evolution of the map-
ping. It is convenient to choosHr, 0, 1) as the point
of the sphere of radiug with the same#f, » as
x(r, 6, A) (see Fig. 1). Thust; and§, are radial vec-
tors:

& =é&er, (32)

&= Eger
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4.1. Perturbations oy’
We show inAppendix B (Egs.(B.13) and (B.14)

that the first-order perturbation of the gravitational po-
tential coefficieny}’ = [, p(r, 0, A)r‘ Y} (6, 1) dV is

o = [ swor'vyav— [ gy dr (@9
Vo 2o

(“sup + pdiv (E,r) Y7 AV,
Vo

19y = (34)
where, for simplicity, we now denote Ipthe reference
densityp(a, 0). Using Eq(A.6), relation(33)becomes

b
8107 = / ( / alepr‘+2dr—2[p]sir“z>
2 \Jo e

<Y A2 (35)

b
819y = 4m /0 S1epp ¥t dr — 4y [ plET 72,

ry

(36)

where) . denotes the sum over all interfaces, includ-
ing the external surface and denotes the unit sphere
(seeAppendix A). Eg.(36)is commonly used to inter-
pret the global gravity anomalies, either directly (e.qg.
Ishiiand Tromp, 200]Eq. 5), or after having expressed
&1 as a function o081, through a Newtonian viscous
law (e.g.Hager and Clayton, 1989; Ricard and Vigny,
1989.

The total perturbation up to second order is given
by (seeAppendix B

{r'sip + pdiv (&)} Y7 dV
Vo

+./V {6|,odiv (&)

L+ 2
H 2 a2 e iy v

S¢y =

(37)
with (see(19)—(21)

m m 1 m r 1
Sy = d1¢p + 5020¢ . E=E8e =8+ 582,

1
Sip = 8up + Z82p. (38)

2
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Note that in the quadratic terms, we have replaged
by &, since this is correct to second order.

The case whert =0 and ¥" = Y = 1, corre-
sponds to the perturbation of the mass already consid-
ered inChambat and Valette (2001, Eq. 10Pence-
forth, we will only consider > 1.

4.2. Decomposition into hydrostatic and
non-hydrostatic parts

Given a reference density model, we can com-
pute the hydrostatic shape of the corresponding ro-
tating model by integrating Clairaut’s equations up to
second order (see e.gharkov et al., 1978Denis,
1989 Moritz, 1990for a review, andChambat and
Valette, 2001for a derivation of Clairaut’s equation
to first order using the shape perturbation formal-
ism).

Let&n(r, 6, 1) be the height of a hydrostatic equipo-
tential surface with respect to the spherical surface of
reference. As equipotential surfaces are also isodensity
surfaces, the hydrostatic potential coefficiémpy’ is
obtained by setting = &ney, ands;p = 0, into expres-
sion(37)for 8¢}, i.e..

Snd? :/v {pdiv (Enrfer) + %p div (& r’z‘ler)}
0

XY dv. (39)
Let us now decomposg as follows:
& =&+ &d, (40)

where &y is the height above the hydrostatic quasi-
ellipsoid and is related to the deviatoric part of the
stress tensor. The non-hydrostatic contribution to the
potential can now be defined by

{rdip + pdiv (Ear‘en)y;" dV
Vo

+/V {8|,0 div ((&n + &a)rier)

Sady =

L+2
+— o div(EG rer)

(€ +2pdiv ot le) | YAV, (41)
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so that

5y = ondy’ + dady- (42)

4.3. Specification ofy

The mapping is only constrained at the interfaces
where § must correspond to the height of the in-
terface with respect to its spherical reference. For
simplicity, we consider the limit wheréy = 0 be-
tween the interfaces. Consequently= &,, andép
represent the lateral variations of density over the
hydrostatic quasi-ellipsoidal surfaces. As these are
non-hydrostatic variations we will denote them by
8dp-

Because the integrands in Bd.1) involve deriva-
tives of &g, we perform an integration by parts and
take the limitég — 0 between the interfaces. Oy,
the value of&y is given by the height of the to-
pography above the hydrostatic quasi-ellipsoids. For
instance

/ pdiv (Egrier) Yy dV
Vo

div (0&qrY)" er) — grad(Y}') - eréqrt dVv,
Vo

=— | [pléary; dx —

| Gty av. @)
20 Vo

By letting &g — 0 in Vp\ X, we obtain
[ pdviearteqry v = | ter'vydz. @4
Vo 2o

Upon other similar integrations, E@l1) can be rewrit-
ten

Sap) = L] + A7 + B + C}' + D} = L} + N,
(45)
with

m

v = [ rsaprrav - [ leatvrs. @)
Vo o

42
2

m

"= [plegrt 1y} dx,

2o

(47)

B = - / [Sapléar' V)" A5, (48)
o
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o = / S div (Enrer) Y7 AV
Vo

—(t+3) /E [Pleaénr 1Y} d., (49)
0

p = [ kot ds. (50)

o
Ly is the term classically considered in the linear
theory (Eq(33)), the inversion of which provides con-
straints on density heterogeneity within the Earth. The
remaining second-order terms should be subtracted
from the observed potential if one wished to preserve
the linear inversion formalism. They will be numer-
ically estimated in the next sectiod}' corresponds
to a piecewise homogeneous Earth mo@almino,
1994) Note that inA}’, the contributions from the
outer surface and the Moho sum up, whereas they
cancel each other ih. B} accounts for the coupling
of non-hydrostatic topography and lateral variations
of density over the interfaces. To our knowledge, the
termsCy' and Dy’ have never been considered before.
They represent the coupling between hydrostatic shape
and non-hydrostatic structure. The decomposition
into C}' and D}’ has been chosen in order to obtain
expressions that can be easily evaluated (see Sections
5.3 and 5.4 Ny is the sum of all the non-linear
terms.

5. Numerical evaluations

In order to compare the non-linear terms to the ob-
served potential models available uptte- 360, den-
sity and topographic models are needed. As such a high
resolution is only reached for the external topography,
we will use approximations that should be sufficient
to evaluate the order of magnitude of these correcting
terms.

The height and gravity anomalies corresponding to
Ay, By, Cy', Dy, Ny, are defined by introducing these
quantities instead a@f’ in relations(8) and (9) and are
denoted bye’s,, {5,y CCor Cher N @NASagY, 8BS,
5cgy dpgy dngy -

Denoting byZonsthe observed value, we define, for
eacht, the scalar product with a second-order term, say

Za, BY (Zobs Ca)e = Dok o C% o E,. We will com-
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pare the second-order terms with the observed valuesby the digital elevation model JGP95E (e.g. EGM96

through the ratio of their norm:

alle /{54, 8ade

I¢obsll ¢ B v/ {obs, Cobs)z’

the correlation:

(51)

Cobs CA)@
iCobsllelicalle”

and the variance reduction:

Cory(Lobs £a) = (52)

2
IZobsll7 — 11 ¢obs —

2
gA ||@
> .
ll Sobsll

V@(Cobs CA) = (53)
Notice that these three quantities are invariant when
replacings4 andgops by 84 g anddggps OF by ¢onsand

A, respectively.

5.1. TheA}’ term

Using(A.4), we rewriteA7' as

AP = —2n(0+2) Y rAlED! (rs). (54)

The coefficientsgg)z’ of the squared topographies can
be evaluated from models of interfaces by direct inte-
gration over the sphere. These digital elevation mod-
els provide estimations of the altitude of the inter-
faces, i.e. the heightl of the interface with respect
to the quasi-geoid. We identifid with &4, the height
with respect to the hydrostatic quasi-ellipsoid. The har-
monic component of degree zero &f is null, i.e.
£4(6, A) = H(6, ») — HY, because, by definition, the
radii of the reference model are the mean radii of the
Earth(Chambat and Valette, 20Q1)

Owing tory/b < 1 and to the likely amplitudes
of [p]gg, the main contribution tad7’ comes from
crustal topographies. Thus, we ignore the discontinu-
ities at 410 km, 660 km, and at the CMB. Going down-
ward, we consider four interfaces and five layers: at-
mosphere § = 0), ice (o = 900 kg/n?), oceanic wa-
ter (ow = 1000 kg/n?), crust pc = 2900 kg/nt), and
mantle pm = 3250 kg/n). The four corresponding to-
pographies are, respectively, denoted&@?ft for the
outer topography!€® for the bottom of iceg[°% for
the top of solid rock (bottom of water and ice), and
ggﬂoho for the Moho. The first three are directly given

web sité).
For A}, the Moho topography can be evaluated un-
der the Airy’s isostatic hypothesgrx[p]gd =0,i.e.

_ Pc

Moho
&4 =
Pm — Pc

&%, (55)

where the equivalent rock topograpffitis defined by

Pc‘feq_ 0c ErOCk-l-pw(E'CG rock) + pi (Eout |ce

(56)

in order to replace the water and ice by a mass-
equivalent crustal laygBalmino et al., 1973)

This leads to the corresponding height and gravity
anomalieg8)—(9)

3(¢ +2)

re\ (o] &3
2(2@+1)Z( ) o2 6( z). (57)

Cae =

m n

PASE _ (¢ — e, (58)
b

wherery denotes the mean radii of the four topogra-
phies mentioned above. These relations, together with
(55), enable us to evaluatg anddg.

Figs. 2 and &how maps 084 ¢g and¢,4. Their val-
ues are significant in high topography regions, namely
Tibet and Andes, where the height reaches 30 m and
15m, respectively, and the gravity reaches 80 mgal.
These values are comparable with those derived from
the geopotential model EGM4Bemoine et al., 1998)
and shown irFigs. 3and 5

For¢ 2 15, A} is well correlated to the observed
potential Fig. 6) and yields a 40% norm rati¢-{g. 7).
For ¢ = 20-60, this term contributes up to 30% in the
observed potential variancEig. 8).

Note also that, under the approximations-H
2)/(2¢ + 1) ~ 1/2 and ¢x/b)+1 ~ 1, the following
local relation holds:

= %mewm

Considering only the equivalent rock topography and
Moho yields

(59)

! ftp://cddisa.gsfc.nasa.gov/pub/egmo6/
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Fig. 5. Same abig. 3for height anomalies.

5.2. TheB}' term

B} is given by

By = —4n )y rA([Bapléa)y (61)

TUT A e |

N "
o

and the corresponding height anomaly is

6 <12 08 04 .00 04 08 12 16
Height anomaly (m) corresponding to D
=~ Sy (1) PO g
Fig. 4. Same aBig. 2for height anomalies:j. Bt 20+1 b 02

ry

Assuming that the lateral variations of density over the
Moho can be neglected, we consider the contribution
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Fig. 6. Correlation, as a function éf(cf. Eq.(52)), of the second-order terms with EGM96. The dotted line is the 99% confidence level.

of the equivalent topography only. At the outer surface, oceanic and continental crusts and taking into account
we assume that the density is proportional to the ocean—that the degree zero component of the perturbation of
continent functiorO defined byO; = 1linthe oceanic  density is null, we have

domain and); = 0 on the continental domain. Defin-

ing Ap as the difference between the densities of the 8d» = Ap(Oc — (0c)9). (63)
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Fig. 7. Norm ratio with respect to EGM96, as a functior?d¢tf. Eq.(51)), of the second-order terms.

Thus, the height anomaly is Taking Ap = 150kg/n? we obtain gravity and
3 A height anomalies ranging from25 mgal to 12 mgal
o = l((oc _ (0c)8)§eq)l’7’. (64) and—30m to 10 m, respectivelfr(gs. 2 and 3 5pg is

20+1 p2 anti-correlated with the observed gravity. This is more
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Fig. 8. EGM96 variance reduction, as a functioredtf. Eq. (53)), due to the second-order terms. A reduction of 0.1 means that the second
order explains 10% of the data variance.
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obvious in the spectral domain where the correlation is
negative fort 2 7 (Fig. 6). This implies that the vari-
ance reduction is negativ&ify. 8), which means that
this term does not explain at all the observed potential.
However,B}' should cancel with terms in}’ because

of isostasy. We have indeed

L7 + By = / rt8qpYy" dv
Vo

- [ 1o+ bopléavydz (65)
2o
Ly + B}
b 2 0+2
= / / Sapr e dr — Z[p + Sapléars”
2 \Jo -
XY d2. (66)

Considering >~ cste inthe uppermost part of the Earth,

isostasy states that the expression inside the parenthesi

is small.

5.3. TheC} term

Let us now evaluate the order of magnitude of
the first term that couples the hydrostatic shape with
the non-hydrostatic perturbations (E§). Correct to
first order, the hydrostatic shape is (€Ghambat and
Valette, 200}

2

S EY30.2).
where ¢ is the flattening of the hydrostatic quasi-
ellipsoids. As the flattening does not vary much
within the Earth, and as the non-hydrostatic per-
turbations occur mainly in the uppermost part of
the Earth, it is sufficient to use the approxima-
tion e(r) >~ €(b) ~ 1/300. Substituting67) into (49)
yields

Sh(r’ 0’ )") = -

(67)

m

cr = _ 2 )e+3)

3V5
x(/ Saprt Yy dv-/ [pleart YIYy dz)
Vo >0

(68)

101
o == Zebie+3) [
35 Q
( /0 ’ Saprt?dr —Z[p]édr?_Z) Y3y ds2.
rs
(69)

The comparison of expressi@#B)for C;’ with expres-
sion(46)for L} suggests that, owing to the additional
factor Yg in (68), Cy* can be approximately expressed
as a function ofLy', L' , and Ly’ ,. More precisely,

if we assume that(b)? ~ 1 in the uppermost part of
the Earth, we show iAppendix Cthat an approximate
expression for the corresponding height anomaly is

o[ (2
2

E/here Lg and éqg are the first-order non-hydrostatic
eight and gravity anomalies, defined {8) and (9)
with L} instead ot} . Approximating these first-order
anomalies with the observed values, we find that the
8cg and¢c ranges are-70 mgal, 60 mgal, anet4 m
(Figs. 2 and % The spectral amplitude reaches 35%
of the observed one at high degrees, the variance re-
duction reaching 30%Hgs. 7 and 8 The growth of
the ratio of second order to observed potential with
(Fig. 7) indicates that taking the observed valuesipr
andégg is a good approximation for relatively low
only.

Note also that, assuming ¢ 3)/(2¢ + 1) ~ 1/2,
we can deduce frort¥0) the local relation

), (8020, 7) . cal6, )
_3J§b<2 " )

e(b) €+3
67-[\/5 20+1

5
= 8 32’) YY) ds2
g

(70)

ce(6, 1) = Y36, 1)

(71)

) . (72)

2c(6,2) = En(b. 6. 2) (‘Sdé’(j 3 | 3(0,2)

2b
5.4. TheD}' term

Substituting67)into the expressio(b0) of D' and
usinge(r) >~ €(b) yield
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2
D} == z(b) /9 (%j[p]sdr‘;z) Y3v{ de2.

(73)

Nor
NS

0
N0
T
N0

B

LI

L
b
"

Under the assumptiotl 2 ~ b¢*2, the Airy compen-
sation ), [p]éd = 0 would imply thatDy' is very

2
small. A more convenient hypothesis is to restrict the 3 . 5 RE | 3 S o
Airy compensation to the continental area and to as- /-’ Ef)\ag,’ f o /s
. . _ gt i _’ﬂ o S 7

sume a constant crustal oceanic thickn@ss ([p]éd = 2 . Jee b 5
—pm&®40,). It yields for the height anomaly: : :/J T it

op, = 76(17) pm ) 3
PET 2nB(2¢ + 1) p2 )

| 90— 0918y as. (74) A T R

.09

We find that the corresponding gravity is less than
1.2mgal and the height is less than 1.6Figé. 2 and

4). The spectral amplitude is less than 2% of the ob-
served one, and the variance reduction less than 2%
(Figs. 7 and R This term is the smallest one and is
negligible.

e

R

206

5.5. TheN}' sum

A.001

Let us now consider th&y" sum of all the second-
order termsdy g ranges from-135 mgal to 220 mgal,
while ¢y varies from—19m to 12m Figs. 3 and h
The norm ratio reaches 60% at high degrees while the
variance reduction is about 20% fog> 20 (Figs. 7 and
8). The variance is reduced mainly by tA¢erm, and,
to a lesser extent, by ti@term at high degrees.

The influence of the second-order terms is weak
at low degrees. For example, the £2) = (2, 0) val-
uesg9, = 0.03m,¢%, = —0.15m,¢2, = 0.13m, and
¢9, = 0.44m are small with respect to the observed
non-hydrostatic value of 33 m.

Note thatthese four terms are probably not estimated
with the same accuracy. Our estimatiomdgf, which is
the predominant term, is fairly accurate, at least for rel-
atively low degrees for which the Airy compensation
is a good approximationCy' is the most accurately
computed term since its calculation relies on very few
hypotheses. Because this term involves the first-order 4
potential, its computation could still be improved by
using an iterative procedur8;’ an Dy’ are less accu-  Fig. 9. Detail of the gravity anomaly (mgal) in Tibet. From left to

rately determined, bm);ﬂ is negligible andBZl is only right: non-linear contribution), EGM96 gravity, and EGM96 cor-
significant at low degrees rected with the non-linear term. Notice that the intervals do not have
) a constant length within the scale.

YpINDF 01 Sutpuodsanos (jeow) Ajewoue QAR

oo

WozE 09

]

NATNOL
NN
N N0
N0 05

0
a0

(TR

[

0L

w0

001

wor
1

o0s

N-965T 01 Swpuodsaniod (jenw) Sewoue AIALLY
0o
N

ﬂ‘e’
011

o0zE 0091

A

o

e
7

xan
e
N
N



F. Chambat, B. Valette / Physics of the Earth and Planetary Interiors 151 (2005) 89-106 103

6. Conclusion where p is the Legendre function of degreeand
orderm, with the following normalization:

Usually, in order to constrain the Earth’s internal
structure, the potential is interpreted by using its first- i/ Y™ (6 )L)Yrr/z/(e 2 de
order expression as a function of density lateral vari- 47 /o e
ations and topography. We have here extended these 1 (20w )
expressions up to second-order. The magnitude of this = — / / Y/ (6, 2)Y, (0, A)sin 6 doda
second-order potential has been evaluated up to har- 4rJoJo
monic degree/ = 360. For¢ > 20, its amplitude is = 555% (A.2)
about 30% of the observed potential, yielding a 20%
variance reduction. Maps of the difference between the where(S{ is the Kronecker symbol and whefzdenotes
observed potential and its second-order estimation il- the unit sphere. This yields for instance:
lustrate this variance reduction in the spatial domain
(Figs. 3 and » The second-order term accounts for a Y8(9, A) =1, Yf(@, 1) = +/3cosb,
significant part of the gravity field over Tibet and the
Andes Figs. 3and § itreaches 20 m in terms of height
anomaly. Y716, 2) = V3sindsin a,

Our numerical evaluation also shows that, for low
harmonic degrees, the influence of the non-linear term @
is relatively small. As a consequence, global Earth 2
models that are constrained by the lower harmonic
degrees of the gravitational field only, would not be
dramatically modified by taking non-linear terms into
account. On the contrary, second-order terms signifi-

Y16, ») = V/3sinfcosa,

Y96, 1) = ~—(3cog 6 — 1). (A.3)

The degreé, orderm, coefficient of a functiork(0, 1)
is denoted by:}':

cantly contribute to the gravitational potential for in- h}' = y / h(0, 2)Y;" (6, 1) ds2, (A.4)
termediate wavelengths (29 ¢ < 360). Thus, when T/

trying to constrain the interior of the Earth, or any o £

planet, global inversions of the complete gravity data- p(g, ») = Z Z REY (O, 1). (A.5)
set should incorporate the non-linear terms discussed =0 m——t

in this article.

For a fieldh(r, 6, A) defined in a spherical volumi,
Eq.(A.4) yields

Acknowledgements b
/ hY) dv =/ / hY}" ds2r? dr
Vo 0 JQ

We are grateful to Yves Rogister, Emmanuel

Chaljub, and Yanick Ricard for careful reviews of a b
draft of the article. = 4”/0 h (r)r®dr. (A.6)

Appendix A. Definition of ¥;"

Appendix B. Perturbations of [, f(x)rkYg"dV
We use the real spherical harmonics, defined for

L,meN, - <m<{by In this appendix, we first show that the perturbations
of volume integrals of the kind
p(cos)cos nir), ifm >0,

e = {p'e’"(cose) sin(ml). fm <0 OB F= /vf(x)rkdv ®
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are given, to first order, by Let us remark that for any scalar functigh

81 F = | rkspFdv — / K f& -nldE,  (B.2) U div{§; divg; — V(&)
Yo o +VV(U)Ey - & + 2f gradU - &, divé;

81F = | (Fsuf + fdiv(FEy))av, (B.3) = div{U§, divE; — UVE;(§;) + gradU - §,§,}.

Yo (B.12)

and to second order by
SettingU = r* in that relation and substituting it into

82 F = | {(*8af + 281 f div(r* &) + fdiv(rEy) (B.11) yield (B.4). Expressing the three last terms of

Vo (B.4) in spherical coordinates givéB.5).

C ke A k Taking fY}" instead off, assuming thag; andé
+f AV gL dvEy —rVE () are radial, arﬁd noting thag, ¥;" = 0, 83,Y}" z 0, an2d

+grad¢t) - £, &)} dv. (B.4) 82 Y™ =0, relations(B.2), (B.3), and (B.5)give the

H — kym :
Whené, is radial, this expression can be simplified in perturbations of = [, f(x)r"¥;" dV

81F = rk81ngz’1dV—/ K[ f&, - )Y A,

8o F = Vo{rk521 f =+ 28y f div(r*Ey) + £(div(*E,) Yo %
+ (k +2))f div(&y - £75 Ler)) dV. (B.5) (B.13)

In order to show thege relati.ons, we first notice Fhat 51.F = | (Fouf + fdiviFe)) Y dv, (B.14)
sincer is constant at a fixed point during the evolution IV
s1./X =0 and 8.r* = 0. (B.6)
Thus, relation(22) implies that boF = Vo{rkSZIf T2 div(r"éjl) + ﬂdiv(rk&)
surk = grad¢t) - &;. (B.7) + (k + 2)) f div(E2rk e vy dv. (B.15)
Using(24) and (15)we deduce that Ityields
Saurk = su(grade*) - &) sF= [ (i + [ div( &)y dv

= grad(®) - & + V() - &1 (B.8) v

The definitions of perturbations as derivatives yield + /V o(511f div(r*&)
su(r* ) = r'suf + four, (B.9) + (k4 2)f div(&? ¥ er)/2)Y) dV,  (B.16)

Sa(r* ) = r*sa f +20ur")Suf) + 2. (B.10)  itn (see(19)—(21)

Now substitutingB.6) into (26) yields(B.2), and sub- ., 1 1
stituting (B.7) and (B.9)into (27)yields(B.3). Substi- ~ 6F¢ = d1F + 50927, E=&+ 62
tuting (B.6)—(B.10)into (31) yields

1
Sif=duf+ 55211'- (B.17)
82F = | {rFoaf + 26uf div(rFEy) + f(div(*E,)
Vo Eq.(B.16)yields(37) by takingk = £ and f = p, i.e.
+rk div(g, divE — VE(81))) F=e

k k . Note that takingk =2 andY}" = Yg =1 corre-
+ VY08 - §1+ 2/ grad(”) - &1 divE fdV. sponds to the perturbation of inertia considered in
(B.11) Chambat and Valette (20Q1)
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Appendix C. Expression ofCy’

Let us define the function, of (6, 1) as

X, = / sapr*2dr — S oléars 2. (C.1)
ry
We aim to express (see E$9))
2
Cl = ———¢(b €+3/XYOY’"d.Q C.2
i NG ()€ +3) | XerzYy (C2)
as a function of (see E¢46))
For that purpose, we use the expansion
YY ="y oy, (C.4)
6/
that yields, for any functiot
/hyzyg A2 =4am >y ony. (C.5)

ZI !’
where they are defined in a similar way as for the com-
plex spherical harmonics (eDahlen, 1976; Balmino,
1994 by

m m't

You's (C.6)

= —/ Yo' yy!ds.
For (s, 1) = (2, 0), they are related to the Wignerj3-
symbols (see e.§Veisstein (20049r Rotenberg et al.,
1959 by

0?2
ym0 = (—1y"\/5(2¢ + 1)(2¢' + 1) (0 0 o)

¢ U2
X .
—mm'0

The selection rules of the Wignerj3symbols im-
ply that y7% % is null unlessm = m’', and ¢’ = ¢ —

2,¢,0+2fore>2o0r¢ =1,3for¢ =1. Thus, the
expansior(C.4) can then be simplified in

mmQ

0
TS o+ VI OY ] 4 VSRV .
(C.7)

Yoy =

where the first term of the right-hand side is implicitly
null for |m| > ¢ — 2. Thesey can be evaluated with the

105

expressions given, e.g. thandau and Lifchitz (1967,
p. 106)

mmo /= 0 +1) = 3m?
M =S G a1 3y o)
2
wmo 3 (€= 12— mA(—m?) \ "
Vieia2 = 5*/5 ((24 —3) (2122t +1))
(C.9)
om0 (412 — m?)(¢+2P—m?)
Veer22 = 2*/3 ( (2¢ + 1)(2¢ + 3)%(2 + 5)

(C.10)

By substituting(C.7) into (C.2), C}* can be rewritten
as

cn = Y7, de

2
e+ 3){%";"82 | xe

+)/anm20/QX(an de

0
+J’E"ﬂ22/ Yo dQ}

Supposing that the non-hydrostatic variations lie in
the uppermost part of the Earth, we use the approxi-
mationrt+2 ~ b2 (or rt=2 ~ r¢/b?) to deduce that
X¢ >~ b%Xy_pandX,; ~ b2 X,,0, and thus

(C.11)

o/ )¢ + 3 mmQ0 bZLm_
i 3\/—()( ){Vuzz -2

+5O LY + szﬁgzbizLﬁuz}- (C.12)
Letdqg andzq be the linear deviatoric gravity and height
anomaly corresponding id;’. These two quantities are
related toL}’ by a relation similar tq{10}.

m_ 4”02bz+3 25dge 4 3§dz 4”P2b/z+3z
3 g b 3
(C.13)
with
1)
_ %8 | gl (C.14)
g b
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Substituting(C.13)into (C.12)yields Ik, K.H., Ricard, Y., Rummel, R., Thalhammer, M., 1996. Appli-
cation of spaceborne gravimetry to research on the interior of
cmo— 8mp2 ()€ + 3)be+3(ymm 0_gm the Earth. In: Study of advanced reduction methods for space-
L gﬁ £e-22%¢-2 borne gravimetry data, and of data combination with geophysical
0o om0 om parameters, CIGAR IV Midterm Report, Pub. Hirskel, Graz.
+Yee2 Zp +Veoro ZZ€+2)- (C.15) Ishii, M., Tromp, J., 2001. Even-degree lateral variations in the
. . . Earth’s mantle constrained by free oscillations and the free-air
The corresponding height anomaly is gravity anomaly. Geophys. J. Int. 145, 77-96.
2¢(b) €+ 3 Kaban, M.K., Schwintzer, P., Tikhotsky, S.A., 1999. A global iso-
= — b(VénenlgzzZn_z + ynm OZZ" static gravity model of the Earth. Geophys. J. Int. 136, 519-536.
3/520+1 Landau, L., Lifchitz, E., 1967. Mcanique quantique, €orie non

mm0 om relativiste. 3 édition, Ed. Mir, Moscou.
+Veet2 ZZ€+2)' (C.16) Lemoine et al., 1998. The development of the joint NASA GSFC

.. . . . and the National Imagery and Mapping Agency (MIMA) Geopo-
Thisisthe mostsuitable formulain ordertonumerically  tential Model EGM96. NASA Technical Paper, ref. NASA/TP-

evaluate ¢ in function ofZ. It also yields, with the help 1998-206861, NASA Goddard Space Flight Center, Greenbelt,
of (C_5) Maryland.
Martinec, Z., 1994. The density contrast at the Mohorovicic discon-
mo_ e(b) £+3 b | zyOymdo C.17 tinuity. Geophys. J. Int. 117, 539-544.
bce =~ V520 +1 Jo 27t ’ (C.17) Moritz, H., 1990. The Figure of the Earth. Wichmann.

Nahavandchi, H., $perg, L.E., 1998. Terrain corrections to power

that is(70). H&in gravimetric geoid determination. J. Geodesy 72, 124—135.
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