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Abstract

This paper focuses on the global quantities, radius, mass, and inertia that are needed for the construction of reference Earth
density models. We recall how these quantities b, M, and Z are measured and we give realistic estimates and uncertainties.
Since a reference model corresponds to a spherical average of the real Earth, we detail how these estimates need to be corrected
in order to be used as input data for such a mean model. The main independent data to be used for reference models are:
b= 6371230+ 10m, My = (5.9733 £0.0090) x 10** kg, Zo/ Mo = (1.342 354£0.000031) x 10'3 m>. © 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

A reference or mean Earth model is a spherically
symmetric model of the Earth’s physical parameters.
Mean models (e.g. PREM, Dziewonski and An-
derson, 1981) are fundamental because, as recalled
by Khan (1983), they ‘serve as a multidisciplinary
framework of reference for Earth’s primary physical
properties and their manifestations’. At the present
time, the need for a new reference Earth model is
underlined by the REM website (http://earthref.org/).
In an introductory paper on reference Earth models
Bullen (1974) pointed out that ‘a first requirement of
a reference Earth model is that it must fit the mean
radius, mass and inertia’. Following a suggestion by
Khan (1982), who found large discrepancies between
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such models, it would be desirable to standardize ‘the
density models by adopting a uniform data set for
the radius, mass and inertia’. This was the purpose
of Jeffreys (1976) and Romanowicz and Lambeck
(1977) and later Khan (1983), who recommended val-
ues and associated uncertainties. Furthermore, these
mean data can be used independently from any other
observation to determine bounds on the density and
its moments inside the Earth, as was done by Valette
(2000) using a method initiated by Stieltjes (1884).
The refinement of geodetic and astronomic mea-
surements and of seismological models incites to
reconsider the estimates for the radius b, the mass
M, the inertia Z, the inertia coefficient Z/Mb?, and
the ratio Z/ M. This is the first purpose of the paper.
The second purpose is to define and estimate the
equivalent data My, Zy, Zo/ My corresponding to the
reference density model. Such a model corresponds
to an Earth’s spherical average which must first be
defined. Thus, Mg and Zj related by definition to the
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spherical model are not exactly equal to M and Z.
We estimate upper bounds for these differences by
a second-order shape perturbation. This yields values
and uncertainties for My, Zy and Zo/ M.

The concept of mean models is defined in Section
2. In Section 3, we give estimates and standard de-
viations of the mass, inertia, and mean radius of the
Earth. Section 4 is devoted to the calculation of first
and second-order perturbations between the real Earth
and the mean model. In the last sections, numerical
estimates of second-order terms are given, taking into
account hydrostatic and non-hydrostatic terms. An
original presentation of first-order hydrostatic theory
is also given.

Throughout the paper, the Earth is considered
as the union of its solid and liquid parts. The
classical notations used are: G: gravitational con-
stant; ||x||: Euclidean norm of vector x; r, 0, A:
spherical coordinates (radius, colatitude, longitude);
p/": Legendre function of degree ! and order m;
Py (cos@) cosma and p;*(cos @) sinm A: real spheri-
cal harmonics normalized as

1 27 pw ,
y / p/" (cos0) p' (cos6)
o Jo

x C(mA)C'(m'3) sin 6 d6 da = 8! 87" 55, (1)

where 8[.] is the Kronecker symbol, and C and C’ stand
for either sine (when m # 0) or cosine functions.
With this normalization, the expressions of degree 0,
1, and 2 Legendre functions are

p?(cos@) = «/gcose,

p%(cos 0) = V3sin 0,

pY(cos 6) = Y3 (3cos>6 — 1),

p%(cos 0) = V15sin6 cos 6,

p%(cos 0) = @ sin” 6. 2)

pg(cos 0)=1,

The degree 0 coefficient of a function h(0,)) is
denoted #|o:

1 2r pm
hlo = —/ / h(@,1)sin6 do dA. 3)
4 0 0

2. Definition of a mean model

As pointed out by Valette and Lesage (2001), there
are several ways of defining a mean model depending
on the averaging procedure. They propose the fol-
lowing construction. First, define a continuous set of
surfaces S from the center to the real Earth boundary
which extrapolates the interfaces. Second, define the
mean radius » of § as the spherical mean over the
unit sphere of the distance from the center of mass:

1 2r pm
r=-— / [|x(0, A)|| sin@ db dA, 4)
47 0 0

where x (6, A) is the position vector of the points of S
with respect to the center of mass. Thus, each surface
S can be referenced by its radius r, and a point x of §
can be referenced by r, 8, A (see Fig. 1). Leta(r, 6, A)
be the point of the sphere of radius » with the same 6, A
as x(6, A). Define the radial vector field £(r, 6, A) as

x(r,0,4) =a(r,0,1) +&(r.0,2). ®)

The spherical average po of any scalar field p can be
defined as the angular average of p over S:

2 pm
po(r)zﬁfo /()p(x(r,@,k))sin@d@dk. (6)

Therefore r and pg are the spherical harmonic degree
0 coefficient of ||x]|| and p(x):

po(r) = p(x)lo- )

As shown by Valette and Lesage (2001), this defines
the mean model which is unique to the first-order in &
with respect to the choice of the family of surface S.

Let denote by b the radius of the model, by pp and
p the density of the model and of the real Earth, re-
spectively, and by Vj and V their domain. The masses
are, respectively, defined by

r = |lxllo,

b
Mo =/ podV = 47T/ po(r)r’dr, (8)
Vo 0

M= f pdv. ©)
1%
The inertia tensor is defined as

j:/p(le —xQ®x)dV, (10
14
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Fig. 1. Notations used to define the reference configuration: the surfaces S which extrapolate the Earth interfaces have mean radii r;
the points x of S are referenced by the points a on the spheres of radii r; § = x — a is the radial Lagrangian vector between the two

configurations; 6 is the colatitude and A the longitude.

where [ is the identity tensor and ® the tensorial prod-
uct. Let (eq, e, e3) be the cartesian basis associated
to the equatorial directions § = 7 /2,1 = 0 or /2
and to the polar direction § = 0. Let A < B < C be
the inertia moments, i.e. the eigenvalues of the inertia
tensor, so that

I =J1+TJn+T3=A+B+C. (11)
The inertia is defined as
1 2 2
I:ftrj:f/px dv, (12)
3 3y

and the mean inertia as

2 8w [P
To = f/ por2dV = —”/ po(r)rt dr. (13)
3 Vo 3Jo

The main purposes of the paper are, firstly the evalua-
tion of M and Z (Section 3), secondly the evaluation
of the differences M = M — Mg and §Z =7 — I
(Sections 4-6).

3. Radius, mass, and inertia estimates
3.1. Radius b

The mean Earth radius is usually considered to be
equal to 6371001 m. This value corresponds to the
radius of the sphere having the same volume as the
reference ellipsoid. As noticed, e.g. by Fan (1998), this
ellipsoid is defined in order to best fit the geoid, and
does not take the continental lands outside the geoid
into account. Thus, the mean radius R of the reference
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ellipsoid is an estimate of the mean radius of the geoid,
and the Earth topography has a mean radius b > R.
More precisely, denoting by & the altitude and by 4|o
its mean value (3),

b = R+ hlo, (14)

since & < R. Some authors have already proposed
a radius including the continental volume above
the geoid. For instance, Marchal (1996) used b =
6371200 m and Fan (1998) determined the ellipsoid
which best fits the topography with a mean radius
230 m larger than R.

Numerical estimates of b thus rely on the following:

1. R from the reference ellipsoid parameters;
2. hlo from global digital elevation models (DEM).

We discuss points 1 and 2 together with the appre-
ciation of their uncertainties. First of all, let us note
that the difference between geoid and quasi-geoid is
small (e.g. Heiskanen and Moritz, 1967) and can be
neglected with respect to the errors on the DEMs.

3.1.1. Mean ellipsoidal radius

A reference ellipsoid is defined by four constants:
the equatorial radius a. (usually designed by a), the
geocentric gravitational constant G M, the dynamical
form factor J;, and the angular velocity §2. The geode-
tic reference system 1980 (GRS80, e.g. Moritz, 1988)
recommends

ae = 6378137 m, (15)
GM = 398600500 x 10°m>s2, (16)
Jr =1082630 x 1072, 17
2 =7292115 x 10~ rad s~ . (18)

Although, these values are conventional constants,
they have been chosen as the most representative
of the Earth’s parameters. Chovitz (1988) reviewed
possible improvements and errors on them, and gave

de = 6378136 + 1m, (19)
GM = (398600440 & 3) x 10°m>s2, (20)
J = (1082626 +£2) x 1072, Q1

2 =(7292115+0.1) x 10" rads™!. (22)

Moreover, Chovitz (1988) reported the following
value ranges for a.: 6378 137.8+2.6 m, 6378 136.2+
(0.5-1)m , 6378134.8 £ 2.5m, 6378137.4m (un-
stated uncertainty, from Rapp). Consequently, we
adopt the GRS80 value with an uncertainty approxi-
mately corresponding to the whole range of reported

values:
dae 7

de = (6378137 +3)m, — =47x107". (23)
de

This uncertainty renders insignificant the 13 cm differ-
ence between the mean and the tide-free values (e.g.
Groten, 2000).

GRS80 also yields the polar radius ap (usually
denoted b):

ap =6356752.3141m, (24)

the flattening:
ae — ap
f =———=10.00335281068118, (25)
de
and the squared second excentricity:
2 _ 2

¢? = =L =0.00673949677548. (26)
a
p
Various mean radii of an ellipsoid can be defined.
GRS80 proposes the following ones: the arithmetic
mean radius:
Ri = $(2ac + ap) = ac(1 — § f) ~ 6371008.8 m,
27)

the equisurfacic sphere radius:

R» >~ 6371007.2m, (28)
the equivolumetric sphere radius:

Ry=(atap)'P=a(l — £)'* ~6371000.8m. (29)

Our definition (4) of mean radius yields through an
expansion to the sufficient order in excentricity:

~ 1,2 3 4 _ 5 6
Ry~ae(l — ge'” + z5¢ € )

~6370994.4 m. (30)

We thus propose

dR .
R=63709944+3m,  —= =47x107. (1)
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Table 1
Spherical harmonic degree O coefficients of the altitude, corre-
sponding to several recent DEMs

Model Angular Years of hlp (m)
resolution development
FNOC 10" x 10/ 1960s-1984 237.2
ETOPO5 5'x5 1980s 233.1
Smoothed ETOPO5 30'x30 231.4
TerrainBase 5'x5 until 1994 234.3
DTM5 5'x5 until1995 230.7
JGP95E 5' x5 1994-1995 231.4

3.1.2. Mean altitude and radius

The calculation of h|p needs an integration over
the sphere of a DEM which is usually given in terms
of values of altitude or bathymetry on spherical rect-
angles. Computation of the degree 0 of several recent
models leads to the values of Table 1. Moreover,
Fan (1998) found 230.2m with a smoothed version
(30’ x30") of DTMS5, and Grafarend and Engels (1992)
obtained 233.9 m for model TUGS87 with an orthonor-
mal basis related to the ellipsoid. The DEMs are doc-
umented in the Catalogue of Digital Elevation Data
compiled by Bruce Gittings! at the NOAA/NGDC
web page? and at the EGM96 web page. 3

For those models in Table 1 which give only the
mean topography in each rectangle, we have assumed
that the rectangles with negative values entirely belong
to the oceanic domain and thus that their altitude is
null. This implies, on one hand, an overestimation
due to the few continental areas under sea level and,
on the other hand, a relatively more important un-
derestimation corresponding to rectangles crossed by
a coastline. The FNOC and JGP95E models prevent
these systematic effects by explicitly distinguishing
between continental altitude and bathymetry. Making
use of FNOC, we have estimated the first effect to
be of the order of 0.03 m and the second of —1.3m
(—1m with JGP95E). Furthermore, taking the mean
over the sphere or over the ellipsoid yields a differ-
ence of less than 1 m. Hence, none of these points can
account for the discrepancy between estimates of 4.

Assuming uncorrelated uncertainties, the standard
deviation of hlp can be approximated by oy, =

! http://www.geo.ed.ac.uk/home/ded.html.
2 http://www.ngdc.noaa.gov/seg/topo.
3 ftp://cddisa.gsfc.nasa.gov/pub/egm96/general_info.

Table 2

Earlier published degree O coefficients of the altitude

Mean land Continental Year of Inferred
elevation (m) area (%) publication hlp (m)
7712 30° 1921 231
8752 29.28 1933 255.5
8012 30° pPC® 240
7564 29.14 1967 220
726 30.3¢ 1973 220°

4Reported in Lee and Kaula (1967).

b Unstated, assumed value.

¢ Unstated, private communication in Lee and Kaula (1967).
9 Lee and Kaula (1967).

¢ Balmino et al. (1973).

o/~/3N, where N is the number of 5 x 5 rectangles,
o the standard deviation for an individual rectangle,
and the factor 3 accounts for the proportion of con-
tinents. The uncertainties of 5’ x 5’ models can be
considered to be less than o = 300 m, which yields
on, = 0.06m. The dispersion between models is
much greater and is thus a more careful basis to
appreciate the uncertainty.

Consequently, Table 1 suggests that 233 m is a
reasonable estimate of h|p and that the uncertainty
is of several metres. Furthermore, this value is con-
sistent with earlier models of topography that yield
deviations < 22 m from 233 m (cf. Table 2). We take

dhly _

3% 1072, (32)
hlo

hlp =233+ 7m,
and hence finally adopt

b
b=6371230+£10m, — =1.6x107°, (33)

3.2. Gravitational potential

The external gravitational potential is usually
developed on the basis of spherical harmonics. Out-
side the Earth, the potential ¢ is harmonic and reads:

oo 1
1
@(r,0,)) = —ZZ rlﬁ(clm coSmh
[=0m=0
+Sp sinm) p (cos 0), (34)

where the coefficients Cy,, and Sy, are expressed as
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Cm)_ G 1 { cosm
<Slm>_ 20 +1 Vp(r’g’“’ sin mA
x pJ'(cos0)dV. (35)

Taking expression (2) into account, the first coeffi-
cients can easily be interpreted. The degree O is the
geocentric gravitational constant

Coo =GM = G/ pdV. (36)
\%4

The degree 1 coefficients are linked to the position of
the center of mass xg by

Cu
GM
Si | =

Cio V3

Since the center of the reference frame is usually
defined as the center of mass, they are effectively
null. The degree 2 coefficients are related to the
components of J in (eq, ez, e3) by the well-known
relations (e.g. Heiskanen and Moritz, 1967; Soller,
1984):

X0 (37

Ju=T+ £(C20 —V3C), (38)
In=T+ g(czo +V3C), (39)
J3=1- 2%@0, Ji = —\/fsg (40)
Jiz = —\/chZ] Jz=— g% (41)
Geodesists use dimensionless coefficients defined as
(50) = otz (52 )

where a; is a reference length usually chosen as the
equatorial radius of a reference ellipsoid. However, it
is actually (Cpu, Spn) = GM a:l(élmv Slm) that are
measured and that contain independent information.
These values are determined by both satellite tracking
data and Earth surface data. Geopotential models
are practically given by the values of Cj, and S,
with

*

r

Table 3
Review of some values of GM (including the atmosphere).

GM and uncert-
ainty (10°m3s72)

Reference (and name of
the gravitational model)

Lerch et al. (1978) 398 600 440 20
Smith et al. (1985)* 398 600434 2
Marsh et al. (1985)* 398 600434 5
Tapley et al. (1985)* 398 600440 2
Newhall et al. (1987)* 398 600443 6
Ries et al. (1989)* 398 600440.5 1
Marsh et al. (1989) (GEM-T2)® 398600436

Rapp et al. (1991) (OSU91)¢ 398 600 440

Ries et al. (1992)°
Schwintzer et al. (1997) (GRIM4)¢
Lemoine et al. (1998) (EGM96)¢

398600441.5 0.8
398600437.7 0.2
398600443.2 0.4

4 Reviewed in Ries et al. (1989).

b Reported in Rapp and Pavlis (1990).

¢ From the model coefficients file.

94 This value does not correspond to the one finally adopted for
model EGM96 but to the solution found (Lemoine et al., 1998,
p. 6-137).

The dynamical form factor J; is usually defined as

- V5 Ca
Ja=—+/5Cy = _%72@
_ T = 1/ (T + J22)
= Maé“z . (44)
3.3. Mass M

3.3.1. Determination of GM

Satellite laser ranging tracking data yield the most
accurate values of the geocentric gravitational constant
(Nerem et al., 1995). A review of some values of G M
(including the atmosphere) is given in Table 3. We
retain the current standard value with an uncertainty
consistent with the most recent estimates:

GM = (398600441.5 + 4.0) x 10°m?s72,
d(GM)

—=1078, 4
GM 0 (45)

3.3.2. Determination of M
The Earth mass is recovered from the value of
GM and of G. Unfortunately, G is a very poorly

GM > Lran\! - _
M=+ > (= m A+ Sy sinma) plt ) 4
o, 0, 1) " { + ( ) (Cim cosmA + Sy, sinm) pj* (cos 0) 43)

1=2m=0
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constrained constant, the uncertainty of which has
increased by a factor of about 12 between the 1986
and the 1998 recommended values (Mohr and Taylor,
1999) which yields:

G = (6.673 £ 0.010) x 107" m3kg™'s72,
dG

5= 1.5 x 1073, (46)

Thus, M is also poorly constrained:

M = (5.9733 + 0.0090) x 10** kg,

% =15x 1073, (47)

Due to this large uncertainty, the atmospheric mass
(M = 5.1 x 108 kg ~ 8.5 x 1077 M, e.g. Yoder,
1995) is negligible.

3.4. Inertia T

3.4.1. Deviatoric inertia tensor

Relations (38)—(41) include five data (C»g, C»1, Ca22,
S21, 822) and six unknowns (the components of ;).
The data determine the deviatoric part and the eigen-
directions of the inertia tensor 7, while its trace
remains unconstrained. For instance, the eigen-
directions deduced from geopotential model EGM96
(Lemoine et al., 1998) are as follows:

Longitude A(°) —14.92878 —104.92878 —81.25011
Colatitude 8(°)  90.00003  90.00008  0.00008

Coefficients C»1, S21 are negligible, so that the
eigenvalues of inertia can be expressed as

5

A:I+;/G_(C20—«/§ C222+5222), (48)
5

B=I+;/;(Czo+\/§ C§2+S§2), 49)
V5

C=T7-2-=C. 50
3G €20 (50)

3.4.2. The dynamical flattening
The observation of the precession rate enables the
determination of the dynamical flattening, defined as

C—-(1/2)(A+B)
C ,

H= (&2))]

and therefore provides an additional information in
order to recover the trace of the inertia tensor. The
analysis from Dehant and Capitaine (1996) yields:

dr =6.1x107°.
H

(52)

H = (327379 +2) x 1078,

As indicated in Section 3.4.1, the quantities C —

(1/2)(A+ B) and J33— (1/2)(J11+ J22) can be taken
equal to each other (the difference is 3 x 10712 in rel-
ative value). Hence, relation (44) may be rewritten as

_C—=(1/2)(A+ B)

Jr = , (53)
Ma?

and as

C =TI+ 3%ha’M. (54)

Relations (51) and (53) yield the so-called polar
inertia coefficient:

C I

_n 55
Ma2  H >3)

Taking (54) into account, it also yields the mean
inertia coefficient:

i_ﬁ 1_%7{ §2 (56)
Mb2 T H 3 b))

The term 1 —(2/3)H accounts for the ratio of the polar
to the mean moments, while the last term accounts
for the ratio of the conventional radius to the real one.
Relation (56) is not based upon a hydrostatic hy-
pothesis and shows that Z/M is essentially controlled
by the ratio of two deviatoric (null in a spherical
configuration) data J> and H. It also shows that an
aspherical model that adjusts the degree 0 and (2, 0)
coefficients of the potential fits the mean inertia as
long as it fits . The fact that a hydrostatic model can-
not achieve this does not make any difference to the
mean model which only depends on J(1—2H/3)/H.
Therefore, the only question that arises is how to
determine the relation between the real Earth mass
M and inertia Z and the data My, Zy relevant to a
mean model. This is studied in further sections.

3.4.3. Determination of J»
In order to compare J, from different potential mod-
els, we have to define a coefficient JJ' corresponding to
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Table 4
Values of J», a. and related J;' from different potential models®

Model af (m) Reference year for J» In units of 1073

J2 J 2”(2000)
OSuU91 6378137 1986° 1.082 627 04 1.082 626 68
JIGM2 6378136.3 1986 1.082 62693 1.082 62633
GRIM4 6378136 1984 1.082 62719 (22) 1.0892 62643
EGM96 6378136.3 1986 1.082 62668 (8) 1.082 62608

2 The models are referenced in Table 2, except for JGM2 (Nerem et al., 1994); the values in parentheses are the uncertainties referred

to the last figures of the J, value.
b Assumed year.

a common value a., say the GRS80 ae = 6378 137 m.
Moreover, since the secular change in J, is estimated
to be about 8;J» = —2.6 x 10! per year (Lemoine
et al., 1998), and since the J> values are given at dif-
ferent times according to the model, a slight correc-
tion has to be applied in order to refer them to the
same year, say 2000. These corrections, which are of
the order of the uncertainty, are expressed as

*

2
a
J302000) = J2(2000- A1) <ae) + 9;J2 At. (57

(<]

We adopt (see Table 4):

Tooon) = (1082626.4 +0.5) x 1077,
dJy

-7
7 =46x 1077 (58)

Another complication is related to the adopted tidal
system (e.g. Groten, 2000). Indeed, the following three
systems are usually considered:

e the ‘mean tide’ value J;" includes the permanent
direct and indirect (due to Earth deformation)
luni-solar tides;

e the ‘zero-frequency’ value J; excludes the direct
permanent luni-solar tide potential;

o the ‘tide-free’ value J;' excludes both the direct and
indirect permanent luni-solar tidal potential. This is
the value given by geopotential models.

If AJ, represents the direct permanent tides then

Jén = JQZ + AJy, .]2Z = Jzn +ky AJs, (59)

where k; is a tidal Love number, conventionally an
elastic one, though a fluid one would probably be more

convenient. For EGM96 (cf. the ‘File description’),
the adopted values are k, = 0.3 and

AJr =3.1108 x 1078, (60)

The zero-frequency value is the most convenient one
for determining the actual inertia (Eq. (56)), since
it is related to the actual distribution of mass. The
re-introduction of the indirect tide corresponds to a
correction of 9 x 1070 in relative value, which is about
20 times the uncertainty on J5. It leads to

J$ = (1082635.7+0.5) x 107,
dJ?
—2 =46x107". (61)
S
3.4.4. Determination of /M and T
The inertia coefficient and the ratio Z/ M are eval-
uated by Eq. (56) after taking J> = J;5. They are well
constrained, since G is not involved:

1 13 .2
e (1.342364 £ 0.000009) x 10" m~,

d@Z/M)

—=6.6x107° 2
T/ 6.6 x 107°, (62)

T -6
b2 =0.330692 £ (3 x 107°),

d(Z/ Mb?) 6
TIME =9.7x107°. (63)

Only 7/ M needs to be slightly corrected for the at-
mospheric contribution (8.5 x 1077 in relative value)
when considering the liquid—solid Earth. Indeed the
ratio corresponding to the Earth without atmosphere
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can be expressed as a function of the one with atmo-
sphere by

I I
M no atm B M with atm
2 Mb?

x <1+Mj\j‘“ (1—3”})), (64)
z I (1 B Mam> 65)
M no atm M with atm M
This finally leads to
z 13 .2
™ = (1.342363 + 0.000009) x 107 m~. (66)

The inertia is determined with much less precision
because of the uncertainty on M (i.e. on G):

7 = (8.018 £ 0.012) x 10>’ m? kg,

dzZ

— =15x%x1073. (67)

VA

If we suppose that the four data G M, Cyg, G, and

‘H are independently determined, then M and Z/ M
are uncorrelated, while the correlation coefficient of 7
and M is approximately

- (d(I/M)/(I/M))2

2 dM/M %)

which is very close to 1.

4. Perturbations
4.1. Perturbation formalism

In order to evaluate the significance of the spheri-
cal model with respect to the real Earth, we evaluate
the differences M = M — Mg and §Z = Z —Z by
using a perturbation approach. For this purpose, we
make use of the shape perturbation formalism given
by Valette and Lesage (2001). In this approach, the
real Earth is related to the reference model by a con-
tinuous deformation. Then the physical parameters of
the Earth can be derived from those of the reference
model through a Taylor expansion. This defines the
perturbations to the different orders. The deformation
of the Earth domain is parameterized by a scalar ¢

ranging from O (for the reference configuration) to 1
(for the real Earth) and which can be thought of as a
virtual time. We thus consider the following mapping:

Y(a,t) € Vo x [0,1], (a,t) — x(a,t) € V;, (69)

with Ya € Vg, x(a,0) = a, x(a, 1) = x (see Fig. 1)
and V;—9 = Wy, V=1 = V. For any regular tensorial
field 7, we can now consider the mapping:

V(a,t) € Vo x[0,1], (a,t) > T(x(a,t),t). (70)

The Lagrangian displacement of order » is defined as

n

d
&n(a) =

4 x(a,t)

, (71)
t=0

and the Eulerian, respectively, Lagrangian, perturba-
tion of order n of T as

SneT (a) = 8fnT(x(a, D0 (72)
ar" 1=0
dn

SneT(a) = —T(x(a,1),1) (73)
dr" t=0

With these notations, it is straightforward to see that
Snex =0 and §,x =§,. (74)

Defining &, 8§.T, and &, T, respectively, by

x(a,l) =a+&(a), (75)
T(a,1)=T(a,0)+6.T(a), (76)
T(x(a,1),1) =T(a,0)+68T(a). 77)

Taylor expansion yields to the order N:

N
1
£@) =) — &) (78)
n=1 "
N
1
ST (@) =) 8T (@), (79)
n=1
N
1
8:T(a) = Z;S,ZZT(a). (80)
n=1

Consider now a scalar field f and a vectorial field u. It
is straightforward to get the following usual relations
to the first-order:

Sref =81 f +grad f - &1, 81
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81¢(divu) = div(8yeu) — tr(Vu - V&). (82)

In the case of an integral F = fvf(x) dV, one can

obtain to the first-order that fx,0)

SF=6F= | (uef+ fdivEdV, (83)
Vo

and to the second-order that

$F =81F + 16, F, (84)
with
HF = "y {02ef + 2810 f divE) + f(divéy
0
+(divg))? — tr(VE) - VE))}dV. (85)

4.2. Perturbation of radius and density

Since the perturbations correspond to a purely math-
ematical setting, we are free to choose the evolution
of the mapping. It is convenient to set x(a, t) = a+1t§
so that the shape perturbation is of first-order only:

§ =& =8,

In the same way, we assume that

& =0, Yn>2. (86)
8¢p =081ep, Suep=0, Vn=2. (87)
Relations (4) and (6) can thus be rewritten as
(1xll = r)lo = &lo =0, (88)
(p(x) = po(r))lo = deplo =0, (89)
since p(x) = p(x(a, 1), 1) and po(r) = p(a, 0).
4.3. Perturbation of mass and inertia

From now on, the subscript O corresponding to the

reference configuration will be dropped. Using (83)
and the relation:

810(x?) = 2x - 810x = 2r&;, (90)

we obtain

sM :/(65p+pdivé)dV, 91)
\%4

2 2
311=§/ <8¢p—|—pdivé+p§r> r2dv. (92)
v r

It shows, with the help of

dive = 8,& + 25’, (93)
r

and (88) and (89) that §; M =0 and §{Z = 0, i.e. the
mass and the inertia are preserved to the first-order.
Therefore, the total perturbations to the second-order
read

SM =81 M+ M = 361M, (94)
8T = 81T + 3621 = 38,T. (95)
On the other hand (85) yields

8o M =f (2800 divE + p((divE)?
\%4
—tr(VE - VE))}dV, (96)

_2 2 2\ 1 R )
5= /V (820(px%) + 2810 (px?) div € + p((div £)

—tr(VE - VE)r2}dv. (97)
By using the relations (90) and (93) and
820 (x?) = 810(2x - §) = 2¢7, (98)
820(px?) = 2pE> + 4r&.8¢p, (99)
2
tr(VE - V&) = (3,£,)% +2 (i’) , (100)

we finally deduce that

5M=/V {(up (ar$r+2$r’>

+pf—r (2% + ‘i)} dv, (oD

2
5/\4:/ {(Sgpdivg—l—pdiv (ie)} av,  (102)
\4
sz=2 {azp (ars,.+4‘§r)
3 74 r
& & 2
+2p=" (20,6 +32 ) {r2aV, (103)

5T = %[ {8ep div(Er?) + 2p div(£2re,)} dV.  (104)
\%4

In order to calculate these shape perturbations,
one should ideally know the perturbations in density
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8¢p on surfaces of height & above each reference
sphere. We can only evaluate the order of magnitude
of these terms. Since the mean model is defined to the
first-order only, it will give an estimate of the theoret-
ical error on the data. For this purpose, we separate in
the Earth’s shape the hydrostatic ellipticity due to the
axial rotation from the non-hydrostatic contribution
which contains all spherical harmonic degrees.

5. Hydrostatic theory

In this section, the hydrostatic contribution to § M
and 87 is estimated. Hydrostatic theory consists in
solving together Poisson’s equation:

A = 4nGp — 2822, (105)
and the equilibrium equation:
grad p = —p grad ¢, (106)
with the boundary conditions:

[¢] =0, [gradp -n] =0, (107)

[P =0, o(x)~—1(2%* - (2-x)?) at 0,
(108)

where ¢ is here the gravity potential, p the pressure,
£2 the rotation vector, and [ ] denotes the jump across
an interface.

5.1. First-order theory

These equations are solved by a first-order per-
turbation between the non-rotating mean model and
the aspherical model rotating with the actual §2. Let
d.¢ and 6,0 be the degree [, m coefficients of the
development of the potential and density Eulerian
perturbations. The indices /, m and the dependence in
r will usually be dropped. Egs. (105) and (107) yield
for I # 0:

2 I1+1
{a} + =0 — ( = )}M = 47 G8,p, (109)

[Bep] =0, [grad(8eg) + 4 Gp&]-e, =0. (110)

Let us now consider the new variables:

S
hy = 6?7 8pp = 8ep + hyorp,

h =& — h,, (111)

where g stands for the (negative) radial gravity in the
reference state, &, the first-order equipotential height
above the sphere of radius r, 8, the lateral variations
of density on the associated equipotential surface, and
h the height above the equipotential surface. Thus, for
r = b, hy, corresponds to the geoid height and 4 to the
altitude. Using these variables, Eqs. (109) and (110)
can be rewritten as

2 k2 47 G
2
32hy, — ;(1 —3y)d,hy — 72% = ?awp, (112)
3lylh
[hy] =0 et [9h,] = Lyin (113)
r
V5 22p2
b, hy(B)=3vh(b) + (I — Dhy(b) = — 250
(p() yh(b) + ( )tp() 3g(b)lm
(114)
h(p Cst 1 -1
<ra,h¢,)’;;6<l—1>’ ’ a15)
~ ot
where
k=JVI-1(1+2) (116)
and
4
_ 7w Gpr _ p(r) 117
3g p2(r)

is the ratio of the reference density p to the mean
density po(r) = 3y ps®ds/r> inside the sphere of
radius r. The hydrostatic hypothesis (106) implies that
equidensity, equipotential, and equipressure surfaces
all coincide with each other and that the interfaces are
equiparameter surfaces, so that §,0 = 0 and & = 0.
Then equations (112)—(115) correspond to Clairaut’s
equation, the solution of which is given for all / # 0
by

h _ﬁgzbz X1
(a5, )o=55 (2)o aw

where x1, xp verify

d [ x . 1 0 1 X1
m(m)_r<# xu4w><n)’ (19
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with the conditions:

x| X2 1 -1
<x2)r 0(1_1>r , (120)

cst
0

[x1]= 0 " [x2] = O at the interfaces, (121)

(x2 + (I = Dxp)(b) = 828° at r = b. (122)
5.2. A Poincarés result

A result stated by Poincaré (1902) shows that the
solutions of this system are bounded by simple func-
tions of the radius. Let us assume that for any r,
the ratio y (117) verifies 0 < y(r) < 1, i.e. that
0 < p(r) < pa(r), or that pr decreases with . This
hypothesis is clearly weaker than the one of a de-
creasing density. Let yp be the minimum over [0, b]
of y(r) and p be defined as

P=3 (3(1 - 2Vo)+\/9(1 —2p)2 + 4k2> . (123)

Under the above hypothesis, the solution (x1, x2)(r)
of the system (119) with the conditions (120) and
(121) verifies (Poincaré, 1902, 4 cf. Appendix A):

=L <p<i+2. (124)

Using xp = r dx;/dr, it yields by integration:

(5)'+2 <(4) = uilPlp (5)1 g (125)
b b x1(b) b

It implies that the condition (122) can only be ful-
filled for / = 2 and m = 0O and thus that as is well
known (see for instance Jeffreys, 1976), the solution
only contains the degree 2 order O term. Another

immediate consequence is that the internal flattening,
defined as

34/5 hyl)
€(r) = _ 35 hylz (126)
2 r
is positive and increases with the radius:
0 —
bre _Ohely 1 _(afxo-1_, (127)

€ h(p|g r r

4 This result is slightly more general than the one given by
Poincaré (1902) (p. 84).

5.3. Ellipticity corrections

The mass and inertia perturbations (101) and (103)
can be estimated in the hydrostatic case. Taking the
surfaces S as the equipotential surfaces, i.e. & =
hyp3(cos ) and 8¢p = 0, implies:

b h‘/J h<ﬂ 2
sM=dr | p=2£(20,h, + -2 )r2dr, (128)
0 r r
167 [ h h
5T = 2 [ 2 (28,h¢ + 3¢> rdr. (129)
r r

3 Jo

One can easily obtain theoretical bounds on these in-
tegrals by noting that d,%, and h, are both negative
and by using inequalities (124) and (125). This yields:

4 2
T
0<°L i(2p +3)e(b). (130)

T — 45
Using €(b) ~ 1/300, the values of these bounds
are SM/M < 5.0 x 1076 and 67/ < 13.8 x 107
with p = 2 (yo = 1/2), SM/M < 3.0 x 107 and
8T/T <9.9x 10 % with p=1 (yp = 1).
On other hand, a numerical integration of (118)-
(122) yields:

M

2.7 %1076 gfv94><10—6 (131)
i , = =9 ,

BE/M) ST oM

~6.7x 107°, 132
IIM T M x (132)

These values are very close to the ones for the homo-
geneous case (p = 1), because hy(r) is numerically
close to the homogeneous solution hy(r) = hy,(b)r/b.

6. Estimation of Z o/ M,

The purpose is now to numerically estimate the
perturbations (102) and (104) and to put bounds on
them in the general non-hydrostatic framework. Let
us first decompose &, as

& =&+ &4, (133)

where &, is the degree 2 order 0 component which cor-
responds approximately to the hydrostatic ellipticity.
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&4 is related to the deviatoric part of the stress tensor.
Integrating by parts the term of (102) containing 53
yields:

M =8 M+ 84 M, (134)

with
SpM = / Pl (2arsh + 5’1> av,
\% r r

SaM 2/84,0 div(éher)dV+/8gp div(Ege,) dV
\4 %4

—/ arpé‘%dV—Z/ [p]i‘%dz, (135)
v r wmrE T

where the rx are the radii of the interfaces.

The term §,. M, which corresponds to the hydro-
static shape, is positive and has been calculated in
Section 5.3.

By using the approximation &, =~ hw(b)(r/b)pg,
we see that the first integral in §4M involves the
product of 3h,(b)/b by the integral of the degree
2 order O coefficient of &¢p. This last term is a pri-
ori oscillating with the radius and is of the order of
p&q/r, i.e. much smaller than phy,(b)/b. Hence the
whole term is much smaller than (h,(b) /b)? ~ 10-°
in relative value to M. In fact, we choose to take the
last integral in 84,M as an upper bound for this term.
The second integral is a priori of the order of mag-
nitude of the last two terms. One may note that since
the two fields &0 and div(§4e,) are probably not well
correlated, compensations can occur in the integral,
while the last two integrals contain only negative
terms.

These last two integrals both depend on the radial
variation of the density and on the spherical quadratic
norm of &;. The main term corresponds to the sur-
facic term, since the radial variation of density mostly
occurs at interfaces. Let us note that this term, which
corresponds to a piecewise homogeneous Earth, can
also be deduced with the simple method given by
Balmino (1994). Denoting

2
Sy M = —/ [p]id dx, (136)
P ry

a reasonable upper bound is thus

[8g M| < 455 M. (137)

It remains to estimate § y M, which can be rewritten as

Sy M = —4x Y rslplEDlo- (138)

r=ry

The different values of the RMS (éj) lo can be prac-
tically evaluated from interface models, either by di-
rect integration over the sphere or by summing up the
squared spherical harmonics coefficients, according
to the way the models are specified. It yields 0.63 km
for the external topography and 2.51 km for the solid
topography with model JGP95E, 12.2km for the
Moho with CRUSTS5.1 (Mooney et al., 1998), 4.8-6.0
and 7.2km for the 410 and 660km discontinuities
with Flanagan and Shearer (1998, 1999) models. We
suppose that for the CMB, this value does not exceed
1 km. This set of values leads to

P
=M <1.1x107°, (139)

In the same way, and with similar notations, we can
infer that

[84Z| <4651, (140)
with

167 3 2
8xT = —?rzzrxrz[p]@dno. (141)
Hence
SxT
% <4.1%x107°, (142)

Moreover, using (138) and (141), it is straightforward
to show that

8sT 4 Mb* 55 M

T 31 M’
and that the second inequality is numerically not far
from an equality. This suggests that in 8, (Z/ M), there
is a compensation between perturbations correspond-
ing to the last two positive terms of (135) in such a
way that

8a(Z/M)| _ (

0< (143)

521 SZM SZ‘I (SEM
T - T

/M |~ T M M
_ 52‘1 (SZ‘M -5
_4maX<I, v )51.64X10 .

(144)
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Since the hydrostatic elliptic term is dominant in
the Earth’s shape and can be precisely determined
relatively independently from the mean model, we
think that it is worthwhile to correct Z/M from
the corresponding second-order term (132). The
non-hydrostatic terms correspond to a theoretical error
due to the looseness of the mean model concept and
must be added to the observational error. It leads to

d(Zo/Mo) _ dIZ/M) | |8a(Z/ M)
To/ My — I/M /M
<23 x 107, (145)

Lo _ T (_%Z/M
My M /M
=(1.342354 £0.000031) x 10 m?.  (146)
The inertia coefficient Zy /J\/lob2 can easily be
deduced from these values (see Table 6). Note that
due to the large uncertainties on M and Z, only the
ratios need to be corrected for second-order terms.

7. Secular variations

With the development of geodetic observations, it is
becoming usual to estimate the temporal variations of
global data. Let us thus consider the secular evolution
of the parameters related to mean models.

As far as we know, no temporal variation of G M
or b has been observed yet. Variation of J, has al-
ready been discussed in Section 3.4.3, while those of
G and H are yet under the observational uncertainties
(Chovitz, 1988; Dehant and Capitaine, 1996). These
change rates are related to those of mass and inertia by

aM _ 93(GM) 3G

M GM G’ (147
WI/M) %I HM
/M I M
_dd M| (148)

J H 1-Q/DH

Since the order of magnitude of the meteoritic flux is
1077 M per year, the Earth’s mass variation rate is
negligible. Therefore, M can be considered as con-
stant (0;M = 0) and the variations of Z are due to the

mass redistribution. Let v be the velocity field inside
the Earth, then

9T 2/ e iy 4/ d (149)
== —_— =—| v-xdm,
=3 3/,

and thus
4 Mb?* 1

9(T/M) _ DT _ .
M~ T ~ 3 T Mp),Y T (159

Taking |(1/Mb)fvv -xdm| < lcm per year gives
18, Z/I| < 6.3 x 1072 per year, which is about four
times less than d,;J>/J> and very small with respect
to its own uncertainty. Thus, we expect 3;H/H to be
negative and of the order of 9, J5/J>.

We can conclude that over a few decades, the varia-
tion of the parameters is small with respect to their un-
certainties, except for J, that needs a slight correction.

8. Conclusion

The observed Earth’s mass and inertia have the
same relative uncertainty (1.5 x 1073) as the gravita-
tional constant. The inertia ratio Z/ M, determined by
the zero-tide gravity coefficient J5 and the precession
constant #, is known with more accuracy (6.6 x 1079).

A mean Earth model has been defined as the spher-
ical Lagrangian mean of the real Earth. The corre-
sponding mean radius is b = 6371230 £ 10m. We
estimate the data Zo, My, Zo/ My associated with
this spherical average by a mathematical second-order
shape perturbation. Due to the large uncertainty on
G, only Zp/Mp needs to be corrected with respect
to Z/M; it is corrected from hydrostatic ellipticity
(6.7 x 1070 in relative value), while non-hydrostatic
terms are added to the observational error (up to
2.3 x 107%). Mg and Zy/M, are independent data,
while Zy and My are strongly correlated. The likely
improvement on the accuracy of the measure of G
would directly affect the accuracy of Mjy. How-
ever, theoretical errors on Mg will probably remain
negligible for the near and not-so-near future.

In Table 5, the observational errors, the hydrostatic
and the non-hydrostatic perturbations are compared. It
shows that the aspherical perturbations are significant
for the ratios Z/M and Z/Mb? and that their theoret-
ical errors are slightly greater than the observational
errors.
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Table 5

Corresponding to the parameters of the first line, the columns contain respectively from top to bottom, in relative values, the final uncertainty
(observational + theoretical error), the observational error, the upper bound of the second-order term related to non-hydrostaticity, the
hydrostatic ellipticity correction, and the influence of a 230 m change in the radius

Data b M z T/ Mb? /M
Final uncertainty 1.6 x 1076 1.5 x 1073 1.5x1073 2.6x1073 2.3x1073
Measurement error 1.6 x 1076 1.5%x 1073 1.5x1073 9.7x107° 6.6x107°
Non-hydrostatic error 0 4.4 %1070 16.4x1076 16.4x1076 16.4 x107°
Ellipticity correction 0 2.7x 1076 9.4x1076 6.7x1076 6.7x1076
Influence of b = 230m 3.6 x 1073 0 0 7.2x1073 0
Table 6
Summary of the data for the real Earth and for the reference Earth model®
Data Symbol Value (uncertainty) Unit Relative uncertainty
Real Earth
Equatorial radius de 6.378 137 (3) 10°m 47 % 1077
Geocentric gravitational constant? GM 3.986004 415 (40) 1014 m3 52 1.0 x 1078
Gravitational constant G 6.673 (10) 107" m3 kg’] 572 1.5x 1073
Mass M 5.9733 (90) 10% kg 1.5%x 1073
Angular velocity 2 7.2921150 (1) 10~ rad s™! 1.4 %1078
Tide-free dynamic form factor® I3 1.0826264 (5) 103 4.6 x 1077
Zero-frequency dynamic form factor® J3 1.0826357 (5) 1073 4.6 x 1077
Precession constant H 3.27379 (2) 1073 6.1 x 107¢
Polar inertia coefficient? C/Ma? 0.330698 (2) 6.6 x 1076
Second equatorial inertia coefficient? B/Ma? 0.329619 (2) 6.6 x 1076
First equatorial inertia coefficient® A/ Ma? 0.329612 (2) 6.6 x 1076
Inertia coefficient? T/Ma? 0.329976 (2) 6.6 x 1076
Inertia coefficientd I/ Mb? 0.330692 (3) 9.7 x 1076
Mean inertia ratiod /M 1.342363 (9) 1013 m? 6.6 x 1076
Mean inertia T 8.018 (12) 10 m? kg 1.5%x 1073
Reference earth model
Mean solid topography hlo 233 (7) 10°m 3.0 x 1072
Mean geoidal radius R 6370994.4 (3.0) 10%m 4.7 x 1077
Physical radius b 6371230 (10) 106m 1.6 x 1076
Mass Mo 5.9733 (90) 10% kg 1.5%x 1073
Inertia To 8.018 (12) 107 m? kg 1.5x 1073
Inertia ratiod To/ Mg 1.342354 (31) 1013 m? 2.3 %1073
Inertia coefficientd To/ Mob? 0.330690 (9) 2.6 x 1073
Inertia coefficientd To/ MoR? 0.330714 (8) 24 %1073
Second radial density moment® 0 5514 (8) 103kg m™3 1.5x 1073
Fourth radial density moment’ 04 4558 (7) 103kg m™3 1.5 x 1073

2 The values in parentheses are the uncertainties referred to the last figures of the nominal values.

b With atmosphere.

¢ Related to values of GM and a. of this table and referred to year 2000.

4 Without atmosphere.
€y = 3/\/10/47'[})3.
fpy = 1570 /87D°.

m

i1
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Table 6 summarizes all the values and uncertainties
given in the text. The values for Z/M and Zy/ My
differ from those given by Romanowicz and Lam-
beck (1977), and Khan (1983) by several standard
deviations.
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Appendix A

For [ = 1, it is straightforward to show that x; =
cst and xp = 0. In order to prove (124) for [ > 2, let
us define

_xa(r)

x(r) = (A.1)

xi(r)’

The definition is a posteriori justified by the fact that
x remains finite, i.e. x| does not vanish. The x verifies
the differential equation:

dx L , 2

— = —(k"+3(1 -2py)x —x7), (A2)
dr r

which can be reformulated as

dx 1

— =——(x —xp)x —xo), (A.3)
dr r

with

Xy=7% (3(1 —29)+£,/9(1 —2y)2 + 4k2) . (Ad)
It yields:

3X+ —6X+

= (AS)

dy o1 —2y)2 +4k>

Since x4 > 0, x4 is a decreasing function of y, and
thus for any r:

O<xi(y=D=1-1=<x1(r) <x4+(y0)
=p<xi(y=0)=1I0+2. (A.6)

The relation x_x; = —(I — 1)(I +2) shows that x_
is a negative rrrlcreasmg function of y and that
daecreasing

—(I+2)<x_(N<—->1-1) <0. (A7)

Atthe center, y(r =0) = 1,sothatx; =[1—1, x_ =
—( 4+ 2) and by virtue of condition (120), x(0) =
[ — 1. Noting that dx/dr > 0 for x € [x_, x4] and
dx/dr < 0 outside, we finally conclude that x(r)
remains in the interval [[ — 1, p].
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