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Abstract

This paper focuses on the global quantities, radius, mass, and inertia that are needed for the construction of reference Earth
density models. We recall how these quantities b,M, and I are measured and we give realistic estimates and uncertainties.
Since a reference model corresponds to a spherical average of the real Earth, we detail how these estimates need to be corrected
in order to be used as input data for such a mean model. The main independent data to be used for reference models are:
b = 6 371 230 ± 10 m, M0 = (5.9733 ± 0.0090)× 1024 kg, I0/M0 = (1.342 354 ± 0.000 031)× 1013 m2. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

A reference or mean Earth model is a spherically
symmetric model of the Earth’s physical parameters.
Mean models (e.g. PREM, Dziewonski and An-
derson, 1981) are fundamental because, as recalled
by Khan (1983), they ‘serve as a multidisciplinary
framework of reference for Earth’s primary physical
properties and their manifestations’. At the present
time, the need for a new reference Earth model is
underlined by the REM website (http://earthref.org/).
In an introductory paper on reference Earth models
Bullen (1974) pointed out that ‘a first requirement of
a reference Earth model is that it must fit the mean
radius, mass and inertia’. Following a suggestion by
Khan (1982), who found large discrepancies between
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such models, it would be desirable to standardize ‘the
density models by adopting a uniform data set for
the radius, mass and inertia’. This was the purpose
of Jeffreys (1976) and Romanowicz and Lambeck
(1977) and later Khan (1983), who recommended val-
ues and associated uncertainties. Furthermore, these
mean data can be used independently from any other
observation to determine bounds on the density and
its moments inside the Earth, as was done by Valette
(2000) using a method initiated by Stieltjes (1884).

The refinement of geodetic and astronomic mea-
surements and of seismological models incites to
reconsider the estimates for the radius b, the mass
M, the inertia I, the inertia coefficient I/Mb2, and
the ratio I/M. This is the first purpose of the paper.

The second purpose is to define and estimate the
equivalent dataM0, I0, I0/M0 corresponding to the
reference density model. Such a model corresponds
to an Earth’s spherical average which must first be
defined. Thus,M0 and I0 related by definition to the
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spherical model are not exactly equal to M and I.
We estimate upper bounds for these differences by
a second-order shape perturbation. This yields values
and uncertainties forM0, I0 and I0/M0.

The concept of mean models is defined in Section
2. In Section 3, we give estimates and standard de-
viations of the mass, inertia, and mean radius of the
Earth. Section 4 is devoted to the calculation of first
and second-order perturbations between the real Earth
and the mean model. In the last sections, numerical
estimates of second-order terms are given, taking into
account hydrostatic and non-hydrostatic terms. An
original presentation of first-order hydrostatic theory
is also given.

Throughout the paper, the Earth is considered
as the union of its solid and liquid parts. The
classical notations used are: G: gravitational con-
stant; ||x||: Euclidean norm of vector x; r, θ, λ:
spherical coordinates (radius, colatitude, longitude);
pm

l : Legendre function of degree l and order m;
pm

l (cos θ) cos mλ and pm
l (cos θ) sin m λ: real spheri-

cal harmonics normalized as

1
4π

∫ 2π

0

∫ π

0
pm

l (cos θ)pm′
l′ (cos θ)

× C(mλ)C′(m′λ) sin θ dθ dλ = δl′
l δ

m′
m δC

′
C , (1)

where δj
i is the Kronecker symbol, and C and C′ stand

for either sine (when m $= 0) or cosine functions.
With this normalization, the expressions of degree 0,
1, and 2 Legendre functions are

p0
0(cos θ) = 1, p0

1(cos θ) =
√

3 cos θ,

p1
1(cos θ) =

√
3 sin θ,

p0
2(cos θ) =

√
5

2 (3 cos2 θ − 1),

p1
2(cos θ) =

√
15 sin θ cos θ,

p2
2(cos θ) =

√
15
2 sin2 θ . (2)

The degree 0 coefficient of a function h(θ, λ) is
denoted h|0:

h|0 = 1
4π

∫ 2π

0

∫ π

0
h(θ, λ) sin θ dθ dλ. (3)

2. Definition of a mean model

As pointed out by Valette and Lesage (2001), there
are several ways of defining a mean model depending
on the averaging procedure. They propose the fol-
lowing construction. First, define a continuous set of
surfaces S from the center to the real Earth boundary
which extrapolates the interfaces. Second, define the
mean radius r of S as the spherical mean over the
unit sphere of the distance from the center of mass:

r = 1
4π

∫ 2π

0

∫ π

0
||x(θ, λ)|| sin θ dθ dλ, (4)

where x(θ, λ) is the position vector of the points of S

with respect to the center of mass. Thus, each surface
S can be referenced by its radius r , and a point x of S

can be referenced by r, θ, λ (see Fig. 1). Let a(r, θ, λ)

be the point of the sphere of radius r with the same θ, λ
as x(θ, λ). Define the radial vector field ξ(r, θ, λ) as

x(r, θ, λ) = a(r, θ, λ) + ξ(r, θ, λ). (5)

The spherical average p0 of any scalar field p can be
defined as the angular average of p over S:

p0(r) = 1
4π

∫ 2π

0

∫ π

0
p(x(r, θ, λ)) sin θ dθ dλ. (6)

Therefore r and p0 are the spherical harmonic degree
0 coefficient of ||x|| and p(x):

r = ||x|||0, p0(r) = p(x)|0. (7)

As shown by Valette and Lesage (2001), this defines
the mean model which is unique to the first-order in ξ
with respect to the choice of the family of surface S.

Let denote by b the radius of the model, by ρ0 and
ρ the density of the model and of the real Earth, re-
spectively, and by V0 and V their domain. The masses
are, respectively, defined by

M0 =
∫

V0

ρ0 dV = 4π
∫ b

0
ρ0(r)r

2 dr, (8)

M =
∫

V
ρ dV. (9)

The inertia tensor is defined as

J =
∫

V
ρ(x2I − x ⊗ x) dV, (10)
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Fig. 1. Notations used to define the reference configuration: the surfaces S which extrapolate the Earth interfaces have mean radii r;
the points x of S are referenced by the points a on the spheres of radii r; ξ = x − a is the radial Lagrangian vector between the two
configurations; θ is the colatitude and λ the longitude.

where I is the identity tensor and ⊗ the tensorial prod-
uct. Let (e1, e2, e3) be the cartesian basis associated
to the equatorial directions θ = π/2, λ = 0 or π/2
and to the polar direction θ = 0. Let A < B < C be
the inertia moments, i.e. the eigenvalues of the inertia
tensor, so that

trJ = J11 + J22 + J33 = A + B + C. (11)

The inertia is defined as

I = 1
3

trJ = 2
3

∫

V
ρx2 dV, (12)

and the mean inertia as

I0 = 2
3

∫

V0

ρ0r
2 dV = 8π

3

∫ b

0
ρ0(r)r

4 dr. (13)

The main purposes of the paper are, firstly the evalua-
tion ofM and I (Section 3), secondly the evaluation
of the differences δM =M−M0 and δI = I − I0
(Sections 4–6).

3. Radius, mass, and inertia estimates

3.1. Radius b

The mean Earth radius is usually considered to be
equal to 6 371 001 m. This value corresponds to the
radius of the sphere having the same volume as the
reference ellipsoid. As noticed, e.g. by Fan (1998), this
ellipsoid is defined in order to best fit the geoid, and
does not take the continental lands outside the geoid
into account. Thus, the mean radius R of the reference
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ellipsoid is an estimate of the mean radius of the geoid,
and the Earth topography has a mean radius b > R.
More precisely, denoting by h the altitude and by h|0
its mean value (3),

b = R + h|0, (14)

since h ( R. Some authors have already proposed
a radius including the continental volume above
the geoid. For instance, Marchal (1996) used b =
6 371 200 m and Fan (1998) determined the ellipsoid
which best fits the topography with a mean radius
230 m larger than R.

Numerical estimates of b thus rely on the following:

1. R from the reference ellipsoid parameters;
2. h|0 from global digital elevation models (DEM).

We discuss points 1 and 2 together with the appre-
ciation of their uncertainties. First of all, let us note
that the difference between geoid and quasi-geoid is
small (e.g. Heiskanen and Moritz, 1967) and can be
neglected with respect to the errors on the DEMs.

3.1.1. Mean ellipsoidal radius
A reference ellipsoid is defined by four constants:

the equatorial radius ae (usually designed by a), the
geocentric gravitational constant GM, the dynamical
form factor J2, and the angular velocityΩ . The geode-
tic reference system 1980 (GRS80, e.g. Moritz, 1988)
recommends

ae = 6 378 137 m, (15)

GM = 398 600 500 × 106 m3 s−2, (16)

J2 = 1 082 630 × 10−9, (17)

Ω = 7 292 115 × 10−11 rad s−1. (18)

Although, these values are conventional constants,
they have been chosen as the most representative
of the Earth’s parameters. Chovitz (1988) reviewed
possible improvements and errors on them, and gave

ae = 6 378 136 ± 1 m, (19)

GM = (398 600 440 ± 3) × 106 m3 s−2, (20)

J2 = (1 082 626 ± 2) × 10−9, (21)

Ω = (7 292 115 ± 0.1) × 10−11 rad s−1. (22)

Moreover, Chovitz (1988) reported the following
value ranges for ae: 6 378 137.8±2.6 m, 6 378 136.2±
(0.5–1) m , 6 378 134.8 ± 2.5 m, 6 378 137.4 m (un-
stated uncertainty, from Rapp). Consequently, we
adopt the GRS80 value with an uncertainty approxi-
mately corresponding to the whole range of reported
values:

ae = (6 378 137 ± 3) m,
dae

ae
= 4.7 × 10−7. (23)

This uncertainty renders insignificant the 13 cm differ-
ence between the mean and the tide-free values (e.g.
Groten, 2000).

GRS80 also yields the polar radius ap (usually
denoted b):

ap = 6 356 752.3141 m, (24)

the flattening:

f =
ae − ap

ae
= 0.00335281068118, (25)

and the squared second excentricity:

e′2 =
a2

e − a2
p

a2
p

= 0.00673949677548. (26)

Various mean radii of an ellipsoid can be defined.
GRS80 proposes the following ones: the arithmetic
mean radius:

R1 = 1
3 (2ae + ap) = ae(1 − 1

3f ) ) 6 371 008.8 m,

(27)

the equisurfacic sphere radius:

R2 ) 6 371 007.2 m, (28)

the equivolumetric sphere radius:

R3=(a2
e ap)

1/3=a(1 − f )1/3 ) 6 371 000.8 m. (29)

Our definition (4) of mean radius yields through an
expansion to the sufficient order in excentricity:

R4 ) ae(1 − 1
6e′2 + 3

40e′4 − 5
112e′6)

) 6 370 994.4 m. (30)

We thus propose

R = 6 370 994.4 ± 3 m,
dR

R
= 4.7 × 10−7. (31)
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Table 1
Spherical harmonic degree 0 coefficients of the altitude, corre-
sponding to several recent DEMs

Model Angular
resolution

Years of
development

h|0 (m)

FNOC 10′×10′ 1960s–1984 237.2
ETOPO5 5′×5′ 1980s 233.1
Smoothed ETOPO5 30′×30′ 231.4
TerrainBase 5′×5′ until1994 234.3
DTM5 5′×5′ until1995 230.7
JGP95E 5′×5′ 1994–1995 231.4

3.1.2. Mean altitude and radius
The calculation of h|0 needs an integration over

the sphere of a DEM which is usually given in terms
of values of altitude or bathymetry on spherical rect-
angles. Computation of the degree 0 of several recent
models leads to the values of Table 1. Moreover,
Fan (1998) found 230.2 m with a smoothed version
(30′×30′) of DTM5, and Grafarend and Engels (1992)
obtained 233.9 m for model TUG87 with an orthonor-
mal basis related to the ellipsoid. The DEMs are doc-
umented in the Catalogue of Digital Elevation Data
compiled by Bruce Gittings 1 at the NOAA/NGDC
web page 2 and at the EGM96 web page. 3

For those models in Table 1 which give only the
mean topography in each rectangle, we have assumed
that the rectangles with negative values entirely belong
to the oceanic domain and thus that their altitude is
null. This implies, on one hand, an overestimation
due to the few continental areas under sea level and,
on the other hand, a relatively more important un-
derestimation corresponding to rectangles crossed by
a coastline. The FNOC and JGP95E models prevent
these systematic effects by explicitly distinguishing
between continental altitude and bathymetry. Making
use of FNOC, we have estimated the first effect to
be of the order of 0.03 m and the second of −1.3 m
(−1 m with JGP95E). Furthermore, taking the mean
over the sphere or over the ellipsoid yields a differ-
ence of less than 1 m. Hence, none of these points can
account for the discrepancy between estimates of h|0.

Assuming uncorrelated uncertainties, the standard
deviation of h|0 can be approximated by σh|0 )

1 http://www.geo.ed.ac.uk/home/ded.html.
2 http://www.ngdc.noaa.gov/seg/topo.
3 ftp://cddisa.gsfc.nasa.gov/pub/egm96/general info.

Table 2
Earlier published degree 0 coefficients of the altitude

Mean land
elevation (m)

Continental
area (%)

Year of
publication

Inferred
h|0 (m)

771a 30b 1921 231
875a 29.2a 1933 255.5
801a 30b PCc 240
756d 29.1d 1967 220
726 30.3e 1973 220e

a Reported in Lee and Kaula (1967).
b Unstated, assumed value.
c Unstated, private communication in Lee and Kaula (1967).
d Lee and Kaula (1967).
e Balmino et al. (1973).

σ/
√

3N , where N is the number of 5′ × 5′ rectangles,
σ the standard deviation for an individual rectangle,
and the factor 3 accounts for the proportion of con-
tinents. The uncertainties of 5′ × 5′ models can be
considered to be less than σ = 300 m, which yields
σh|0 = 0.06 m. The dispersion between models is
much greater and is thus a more careful basis to
appreciate the uncertainty.

Consequently, Table 1 suggests that 233 m is a
reasonable estimate of h|0 and that the uncertainty
is of several metres. Furthermore, this value is con-
sistent with earlier models of topography that yield
deviations < 22 m from 233 m (cf. Table 2). We take

h|0 = 233 ± 7 m,
dh|0
h|0

= 3 × 10−2, (32)

and hence finally adopt

b = 6 371 230 ± 10 m,
db

b
= 1.6 × 10−6. (33)

3.2. Gravitational potential

The external gravitational potential is usually
developed on the basis of spherical harmonics. Out-
side the Earth, the potential ϕ is harmonic and reads:

ϕ(r, θ, λ) = −
∞
∑

l=0

l
∑

m=0

1
rl+1 (Clm cos mλ

+Slm sin mλ)pm
l (cos θ), (34)

where the coefficients Clm and Slm are expressed as
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(

Clm
Slm

)

= G

2l + 1

∫

V
ρ(r, θ, λ)rl

(

cos mλ

sin mλ

)

× pm
l (cos θ) dV. (35)

Taking expression (2) into account, the first coeffi-
cients can easily be interpreted. The degree 0 is the
geocentric gravitational constant

C00 = GM = G

∫

V
ρ dV. (36)

The degree 1 coefficients are linked to the position of
the center of mass x0 by




C11
S11
C10



 = GM√
3

x0. (37)

Since the center of the reference frame is usually
defined as the center of mass, they are effectively
null. The degree 2 coefficients are related to the
components of J in (e1, e2, e3) by the well-known
relations (e.g. Heiskanen and Moritz, 1967; Soller,
1984):

J11 = I +
√

5
3G

(C20 −
√

3C22), (38)

J22 = I +
√

5
3G

(C20 +
√

3C22), (39)

J33 = I − 2

√
5

3G
C20, J12 = −

√

5
3

S22

G
, (40)

J13 = −
√

5
3

C21

G
, J23 = −

√

5
3

S21

G
. (41)

Geodesists use dimensionless coefficients defined as
(

C̄lm
S̄lm

)

= 1
GM a∗l

e

(

Clm
Slm

)

, (42)

where a∗
e is a reference length usually chosen as the

equatorial radius of a reference ellipsoid. However, it
is actually (Clm, Slm) = GM a∗l

e (C̄lm, S̄lm) that are
measured and that contain independent information.
These values are determined by both satellite tracking
data and Earth surface data. Geopotential models
are practically given by the values of C̄lm and S̄lm
with

ϕ(r, θ, λ) = −GM

r

{

1 +
∞
∑

l=2

l
∑

m=0

(

a∗
e

r

)l

(C̄lm cos mλ+ S̄lm sin mλ)pm
l (cos θ)

}

. (43)

Table 3
Review of some values of GM (including the atmosphere).

Reference (and name of
the gravitational model)

GM and uncert-
ainty (106 m3 s−2)

Lerch et al. (1978) 398 600 440 20
Smith et al. (1985)a 398 600 434 2
Marsh et al. (1985)a 398 600 434 5
Tapley et al. (1985)a 398 600 440 2
Newhall et al. (1987)a 398 600 443 6
Ries et al. (1989)a 398 600 440.5 1
Marsh et al. (1989) (GEM-T2)b 398 600 436
Rapp et al. (1991) (OSU91)c 398 600 440
Ries et al. (1992)c 398 600 441.5 0.8
Schwintzer et al. (1997) (GRIM4)c 398 600 437.7 0.2
Lemoine et al. (1998) (EGM96)d 398 600 443.2 0.4

a Reviewed in Ries et al. (1989).
b Reported in Rapp and Pavlis (1990).
c From the model coefficients file.
d This value does not correspond to the one finally adopted for

model EGM96 but to the solution found (Lemoine et al., 1998,
p. 6–137).

The dynamical form factor J2 is usually defined as

J2 = −
√

5C̄20 = −
√

5
a∗2

e

C20

GM

= J33 − (1/2)(J11 + J22)

Ma∗2
e

. (44)

3.3. MassM

3.3.1. Determination of GM
Satellite laser ranging tracking data yield the most

accurate values of the geocentric gravitational constant
(Nerem et al., 1995). A review of some values of GM
(including the atmosphere) is given in Table 3. We
retain the current standard value with an uncertainty
consistent with the most recent estimates:

GM = (398 600 441.5 ± 4.0) × 106 m3 s−2,

d(GM)

GM
= 10−8. (45)

3.3.2. Determination ofM
The Earth mass is recovered from the value of

GM and of G. Unfortunately, G is a very poorly
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constrained constant, the uncertainty of which has
increased by a factor of about 12 between the 1986
and the 1998 recommended values (Mohr and Taylor,
1999) which yields:

G = (6.673 ± 0.010) × 10−11 m3 kg−1 s−2,

dG

G
= 1.5 × 10−3. (46)

Thus,M is also poorly constrained:

M = (5.9733 ± 0.0090) × 1024 kg,

dM
M

= 1.5 × 10−3. (47)

Due to this large uncertainty, the atmospheric mass
(Matm = 5.1 × 1018 kg ) 8.5 × 10−7M, e.g. Yoder,
1995) is negligible.

3.4. Inertia I

3.4.1. Deviatoric inertia tensor
Relations (38)–(41) include five data (C20, C21, C22,

S21, S22) and six unknowns (the components of Jij).
The data determine the deviatoric part and the eigen-
directions of the inertia tensor J , while its trace
remains unconstrained. For instance, the eigen-
directions deduced from geopotential model EGM96
(Lemoine et al., 1998) are as follows:

Longitude λ(◦) −14.92878 −104.92878 −81.25011
Colatitude θ(◦) 90.00003 90.00008 0.00008

Coefficients C21, S21 are negligible, so that the
eigenvalues of inertia can be expressed as

A = I +
√

5
3G

(

C20 −
√

3
√

C2
22 + S2

22

)

, (48)

B = I +
√

5
3G

(

C20 +
√

3
√

C2
22 + S2

22

)

, (49)

C = I − 2

√
5

3G
C20. (50)

3.4.2. The dynamical flattening
The observation of the precession rate enables the

determination of the dynamical flattening, defined as

H = C − (1/2)(A + B)

C
, (51)

and therefore provides an additional information in
order to recover the trace of the inertia tensor. The
analysis from Dehant and Capitaine (1996) yields:

H = (327 379 ± 2) × 10−8,
dH
H

= 6.1 × 10−6.

(52)

As indicated in Section 3.4.1, the quantities C −
(1/2)(A+B) and J33−(1/2)(J11+J22) can be taken
equal to each other (the difference is 3 × 10−12 in rel-
ative value). Hence, relation (44) may be rewritten as

J2 = C − (1/2)(A + B)

Ma∗2
e

, (53)

and as

C = I + 2
3J2a

∗2
e M. (54)

Relations (51) and (53) yield the so-called polar
inertia coefficient:

C

Ma∗2
e

= J2

H
. (55)

Taking (54) into account, it also yields the mean
inertia coefficient:

I

Mb2 = J2

H

(

1 − 2
3
H

) (

a∗
e

b

)2

. (56)

The term 1−(2/3)H accounts for the ratio of the polar
to the mean moments, while the last term accounts
for the ratio of the conventional radius to the real one.

Relation (56) is not based upon a hydrostatic hy-
pothesis and shows that I/M is essentially controlled
by the ratio of two deviatoric (null in a spherical
configuration) data J2 and H. It also shows that an
aspherical model that adjusts the degree 0 and (2, 0)
coefficients of the potential fits the mean inertia as
long as it fitsH. The fact that a hydrostatic model can-
not achieve this does not make any difference to the
mean model which only depends on J2(1−2H/3)/H.
Therefore, the only question that arises is how to
determine the relation between the real Earth mass
M and inertia I and the data M0, I0 relevant to a
mean model. This is studied in further sections.

3.4.3. Determination of J2
In order to compare J2 from different potential mod-

els, we have to define a coefficient J n
2 corresponding to
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Table 4
Values of J2, ae and related J n

2 from different potential modelsa

Model a∗
e (m) Reference year for J2 In units of 10−3

J2 J n
2(2000)

OSU91 6 378 137 1986b 1.082 627 04 1.082 626 68
JGM2 6 378 136.3 1986 693 633
GRIM4 6 378 136 1984 719 (22) 643
EGM96 6 378 136.3 1986 668 (8) 608

a The models are referenced in Table 2, except for JGM2 (Nerem et al., 1994); the values in parentheses are the uncertainties referred
to the last figures of the J2 value.

b Assumed year.

a common value ae, say the GRS80 ae = 6 378 137 m.
Moreover, since the secular change in J2 is estimated
to be about ∂t J2 = −2.6 × 10−11 per year (Lemoine
et al., 1998), and since the J2 values are given at dif-
ferent times according to the model, a slight correc-
tion has to be applied in order to refer them to the
same year, say 2000. These corrections, which are of
the order of the uncertainty, are expressed as

J n
2(2000) = J2(2000−+t)

(

a∗
e

ae

)2

+ ∂t J2 +t. (57)

We adopt (see Table 4):

J n
2(2000) = (1 082 626.4 ± 0.5) × 10−9,

dJ n
2

J n
2

= 4.6 × 10−7. (58)

Another complication is related to the adopted tidal
system (e.g. Groten, 2000). Indeed, the following three
systems are usually considered:

• the ‘mean tide’ value Jm
2 includes the permanent

direct and indirect (due to Earth deformation)
luni-solar tides;

• the ‘zero-frequency’ value J z
2 excludes the direct

permanent luni-solar tide potential;
• the ‘tide-free’ value J n

2 excludes both the direct and
indirect permanent luni-solar tidal potential. This is
the value given by geopotential models.

If +J2 represents the direct permanent tides then

Jm
2 = J z

2 ++J2, J z
2 = J n

2 + k2 +J2, (59)

where k2 is a tidal Love number, conventionally an
elastic one, though a fluid one would probably be more

convenient. For EGM96 (cf. the ‘File description’),
the adopted values are k2 = 0.3 and

+J2 = 3.1108 × 10−8. (60)

The zero-frequency value is the most convenient one
for determining the actual inertia (Eq. (56)), since
it is related to the actual distribution of mass. The
re-introduction of the indirect tide corresponds to a
correction of 9×10−6 in relative value, which is about
20 times the uncertainty on J2. It leads to

J z
2 = (1 082 635.7 ± 0.5) × 10−9,

dJ z
2

J z
2

= 4.6 × 10−7. (61)

3.4.4. Determination of I/M and I
The inertia coefficient and the ratio I/M are eval-

uated by Eq. (56) after taking J2 = J z
2 . They are well

constrained, since G is not involved:

I

M
= (1.342 364 ± 0.000 009) × 1013 m2,

d(I/M)

I/M
= 6.6 × 10−6, (62)

I

Mb2 = 0.330 692 ± (3 × 10−6),

d(I/Mb2)

I/Mb2 = 9.7 × 10−6. (63)

Only I/M needs to be slightly corrected for the at-
mospheric contribution (8.5 × 10−7 in relative value)
when considering the liquid–solid Earth. Indeed the
ratio corresponding to the Earth without atmosphere

1.082 62
1.082 62
1.082 62

1.082 62
1.082 62
1.082 62
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can be expressed as a function of the one with atmo-
sphere by

I

M

∣

∣

∣

∣

no atm
) I

M

∣

∣

∣

∣

with atm

×
(

1 + Matm

M

(

1 − 2
3
Mb2

I

))

, (64)

I

M

∣

∣

∣

∣

no atm
) I

M

∣

∣

∣

∣

with atm

(

1 − Matm

M

)

. (65)

This finally leads to

I

M
= (1.342 363 ± 0.000 009) × 1013 m2. (66)

The inertia is determined with much less precision
because of the uncertainty onM (i.e. on G):

I = (8.018 ± 0.012) × 1037 m2 kg,

dI
I

= 1.5 × 10−3. (67)

If we suppose that the four data GM, C20, G, and
H are independently determined, then M and I/M
are uncorrelated, while the correlation coefficient of I
andM is approximately

1 − 1
2

(

d(I/M)/(I/M)

dM/M

)2

, (68)

which is very close to 1.

4. Perturbations

4.1. Perturbation formalism

In order to evaluate the significance of the spheri-
cal model with respect to the real Earth, we evaluate
the differences δM =M−M0 and δI = I − I0 by
using a perturbation approach. For this purpose, we
make use of the shape perturbation formalism given
by Valette and Lesage (2001). In this approach, the
real Earth is related to the reference model by a con-
tinuous deformation. Then the physical parameters of
the Earth can be derived from those of the reference
model through a Taylor expansion. This defines the
perturbations to the different orders. The deformation
of the Earth domain is parameterized by a scalar t

ranging from 0 (for the reference configuration) to 1
(for the real Earth) and which can be thought of as a
virtual time. We thus consider the following mapping:

∀(a, t) ∈ V0 × [0, 1], (a, t) → x(a, t) ∈ Vt , (69)

with ∀a ∈ V0, x(a, 0) = a, x(a, 1) = x (see Fig. 1)
and Vt=0 = V0, Vt=1 = V . For any regular tensorial
field T , we can now consider the mapping:

∀(a, t) ∈ V0 × [0, 1], (a, t) → T (x(a, t), t). (70)

The Lagrangian displacement of order n is defined as

ξn(a) = dn

dtn
x(a, t)

∣

∣

∣

∣

t=0
, (71)

and the Eulerian, respectively, Lagrangian, perturba-
tion of order n of T as

δneT (a) = ∂n

∂tn
T (x(a, t), t)

∣

∣

∣

∣

t=0
, (72)

δn,T (a) = dn

dtn
T (x(a, t), t)

∣

∣

∣

∣

t=0
. (73)

With these notations, it is straightforward to see that

δnex = 0 and δn,x = ξn. (74)

Defining ξ, δeT , and δ,T , respectively, by

x(a, 1) = a + ξ(a), (75)

T (a, 1) = T (a, 0) + δeT (a), (76)

T (x(a, 1), 1) = T (a, 0) + δ,T (a). (77)

Taylor expansion yields to the order N :

ξ(a) =
N

∑

n=1

1
n!
ξn(a), (78)

δeT (a) =
N

∑

n=1

1
n!
δneT (a), (79)

δ,T (a) =
N

∑

n=1

1
n!
δn,T (a). (80)

Consider now a scalar field f and a vectorial field u. It
is straightforward to get the following usual relations
to the first-order:

δ1,f = δ1ef + grad f · ξ1, (81)
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δ1,(div u) = div(δ1,u) − tr(∇u · ∇ξ1). (82)

In the case of an integral F =
∫

V f (x) dV , one can
obtain to the first-order that

δF = δ1F =
∫

V0

(δ1,f + f div ξ1) dV, (83)

and to the second-order that

δF = δ1F + 1
2δ2F, (84)

with

δ2F =
∫

V0

{δ2,f + 2δ1,f div ξ1 + f (divξ2

+(divξ1)
2 − tr(∇ξ1 · ∇ξ1))} dV. (85)

4.2. Perturbation of radius and density

Since the perturbations correspond to a purely math-
ematical setting, we are free to choose the evolution
of the mapping. It is convenient to set x(a, t) = a+ tξ

so that the shape perturbation is of first-order only:

ξ = ξrer = ξ1, ξn = 0, ∀ n ≥ 2. (86)

In the same way, we assume that

δ,ρ = δ1,ρ, δn,ρ = 0, ∀ n ≥ 2. (87)

Relations (4) and (6) can thus be rewritten as

(||x|| − r)|0 = ξr |0 = 0, (88)

(ρ(x) − ρ0(r))|0 = δ,ρ|0 = 0, (89)

since ρ(x) ≡ ρ(x(a, 1), 1) and ρ0(r) ≡ ρ(a, 0).

4.3. Perturbation of mass and inertia

From now on, the subscript 0 corresponding to the
reference configuration will be dropped. Using (83)
and the relation:

δ1,(x
2) = 2x · δ1,x = 2rξr , (90)

we obtain

δ1M =
∫

V
(δ,ρ + ρ div ξ) dV, (91)

δ1I = 2
3

∫

V

(

δ,ρ + ρ div ξ + 2ρξr
r

)

r2 dV. (92)

It shows, with the help of

div ξ = ∂rξr + 2
ξr

r
, (93)

and (88) and (89) that δ1M = 0 and δ1I = 0, i.e. the
mass and the inertia are preserved to the first-order.
Therefore, the total perturbations to the second-order
read

δM = δ1M+ 1
2δ2M = 1

2δ2M, (94)

δI = δ1I + 1
2δ2I = 1

2δ2I. (95)

On the other hand (85) yields

δ2M=
∫

V
{2δ,ρ div ξ + ρ((div ξ)2

−tr(∇ξ · ∇ξ))} dV, (96)

δ2I = 2
3

∫

V
{δ2,(ρx2) + 2δ1,(ρx2) div ξ + ρ((div ξ)2

−tr(∇ξ · ∇ξ))r2} dV. (97)

By using the relations (90) and (93) and

δ2,(x
2) = δ1,(2x · ξ) = 2ξ2, (98)

δ2,(ρx2) = 2ρξ2 + 4rξrδ,ρ, (99)

tr(∇ξ · ∇ξ) = (∂rξr )
2 + 2

(

ξr

r

)2

, (100)

we finally deduce that

δM=
∫

V

{

δ,ρ

(

∂rξr + 2
ξr

r

)

+ρ ξr
r

(

2∂rξr + ξr

r

)}

dV, (101)

δM =
∫

V

{

δ,ρ div ξ + ρ div
(

ξ2

r
er

)}

dV, (102)

δI = 2
3

∫

V

{

δ,ρ

(

∂rξr + 4
ξr

r

)

+2ρ
ξr

r

(

2∂rξr + 3
ξr

r

)}

r2 dV, (103)

δI = 2
3

∫

V
{δ,ρ div(ξr2) + 2ρ div(ξ2rer )} dV. (104)

In order to calculate these shape perturbations,
one should ideally know the perturbations in density

——
f(x,t)
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δ,ρ on surfaces of height ξr above each reference
sphere. We can only evaluate the order of magnitude
of these terms. Since the mean model is defined to the
first-order only, it will give an estimate of the theoret-
ical error on the data. For this purpose, we separate in
the Earth’s shape the hydrostatic ellipticity due to the
axial rotation from the non-hydrostatic contribution
which contains all spherical harmonic degrees.

5. Hydrostatic theory

In this section, the hydrostatic contribution to δM
and δI is estimated. Hydrostatic theory consists in
solving together Poisson’s equation:

+ϕ = 4πGρ − 2Ω2, (105)

and the equilibrium equation:

grad p = −ρ grad ϕ, (106)

with the boundary conditions:

[ϕ] = 0, [grad ϕ · n] = 0, (107)

[p] = 0, ϕ(x) ∼ − 1
2 (Ω2x2 − (Ω · x)2) at ∞,

(108)

where ϕ is here the gravity potential, p the pressure,
Ω the rotation vector, and [ ] denotes the jump across
an interface.

5.1. First-order theory

These equations are solved by a first-order per-
turbation between the non-rotating mean model and
the aspherical model rotating with the actual Ω . Let
δeϕ and δeρ be the degree l, m coefficients of the
development of the potential and density Eulerian
perturbations. The indices l, m and the dependence in
r will usually be dropped. Eqs. (105) and (107) yield
for l $= 0:
{

∂2
r + 2

r
∂r − l(l + 1)

r2

}

δeϕ = 4πGδeρ, (109)

[δeϕ] = 0, [grad(δeϕ) − 4πGρξ ] · er = 0. (110)

Let us now consider the new variables:

hϕ = δeϕ

g
, δϕρ = δeρ + hϕ∂rρ,

h = ξr − hϕ, (111)

where g stands for the (negative) radial gravity in the
reference state, hϕ the first-order equipotential height
above the sphere of radius r , δϕρ the lateral variations
of density on the associated equipotential surface, and
h the height above the equipotential surface. Thus, for
r = b, hϕ corresponds to the geoid height and h to the
altitude. Using these variables, Eqs. (109) and (110)
can be rewritten as

∂2
r hϕ − 2

r
(1 − 3γ )∂rhϕ − k2

r2 hϕ = 4πG

g
δϕρ, (112)

[hϕ] = 0 et [∂rhϕ] = 3[γ ]h
r

, (113)

b∂rhϕ(b)−3γh(b) + (l − 1)hϕ(b) =
√

5
3
Ω2b2

g(b)
δ2
l δ

0
m,

(114)
(

hϕ
r∂rhϕ

) ∼cst
r → 0

(

1
l − 1

)

rl−1, (115)

where

k =
√

(l − 1)(l + 2) (116)

and

γ = −4πGρr

3g
= ρ(r)

ρ2(r)
(117)

is the ratio of the reference density ρ to the mean
density ρ2(r) = 3

∫ r
0 ρs2 ds/r3 inside the sphere of

radius r . The hydrostatic hypothesis (106) implies that
equidensity, equipotential, and equipressure surfaces
all coincide with each other and that the interfaces are
equiparameter surfaces, so that δϕρ ≡ 0 and h ≡ 0.
Then equations (112)–(115) correspond to Clairaut’s
equation, the solution of which is given for all l $= 0
by
(

hϕ
r∂rhϕ

)

(r) =
√

5
3
Ω2b2

g(b)

(

x1
x2

)

(r), (118)

where x1, x2 verify

d
dr

(

x1
x2

)

= 1
r

(

0 1
k2 3(1 − 2γ )

) (

x1
x2

)

, (119)

~r —> 0
cst
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with the conditions:
(

x1
x2

) ∼ cst
r → 0

(

1
l − 1

)

rl−1, (120)

[x1] = 0, [x2] = 0 at the interfaces, (121)

(x2 + (l − 1)x1)(b) = δ2
l δ

0
m at r = b. (122)

5.2. A Poincarés result

A result stated by Poincaré (1902) shows that the
solutions of this system are bounded by simple func-
tions of the radius. Let us assume that for any r ,
the ratio γ (117) verifies 0 ≤ γ (r) ≤ 1, i.e. that
0 ≤ ρ(r) ≤ ρ2(r), or that ρ2 decreases with r . This
hypothesis is clearly weaker than the one of a de-
creasing density. Let γ0 be the minimum over [0, b]
of γ (r) and p be defined as

p = 1
2

(

3(1 − 2γ0)+
√

9(1 − 2γ0)2 + 4k2
)

. (123)

Under the above hypothesis, the solution (x1, x2)(r)

of the system (119) with the conditions (120) and
(121) verifies (Poincaré, 1902, 4 cf. Appendix A):

l − 1 ≤ x2(r)

x1(r)
≤ p ≤ l + 2. (124)

Using x2 = r dx1/dr , it yields by integration:
( r

b

)l+2
≤

( r

b

)p
≤ x1(r)

x1(b)
≤

( r

b

)l−1
. (125)

It implies that the condition (122) can only be ful-
filled for l = 2 and m = 0 and thus that as is well
known (see for instance Jeffreys, 1976), the solution
only contains the degree 2 order 0 term. Another
immediate consequence is that the internal flattening,
defined as

ε(r) = −3
√

5
2

hϕ |02
r

(126)

is positive and increases with the radius:

∂rε

ε
=
∂rhϕ |02
hϕ |02

− 1
r

= (x2/x1) − 1
r

≥ 0. (127)

4 This result is slightly more general than the one given by
Poincaré (1902) (p. 84).

5.3. Ellipticity corrections

The mass and inertia perturbations (101) and (103)
can be estimated in the hydrostatic case. Taking the
surfaces S as the equipotential surfaces, i.e. ξr =
hϕp

0
2(cos θ) and δ,ρ = 0, implies:

δM = 4π
∫ b

0
ρ

hϕ

r

(

2∂rhϕ + hϕ

r

)

r2 dr, (128)

δI = 16π
3

∫ b

0
ρ

hϕ

r

(

2∂rhϕ + 3
hϕ

r

)

r4 dr. (129)

One can easily obtain theoretical bounds on these in-
tegrals by noting that ∂rhϕ and hϕ are both negative
and by using inequalities (124) and (125). This yields:

0 <
δM

M
≤ 4

45
(2p + 1)ε2(b),

0 <
δI

I
≤ 8

45
(2p + 3)ε2(b). (130)

Using ε(b) ) 1/300, the values of these bounds
are δM/M ≤ 5.0 × 10−6 and δI/I ≤ 13.8 × 10−6

with p = 2 (γ0 = 1/2), δM/M ≤ 3.0 × 10−6 and
δI/I ≤ 9.9 × 10−6 with p = 1 (γ0 = 1).

On other hand, a numerical integration of (118)–
(122) yields:

δM

M
) 2.7 × 10−6,

δI

I
) 9.4 × 10−6, (131)

δ(I/M)

I/M
= δI

I
− δM

M
) 6.7 × 10−6. (132)

These values are very close to the ones for the homo-
geneous case (p = 1), because hϕ(r) is numerically
close to the homogeneous solution hϕ(r) = hϕ(b)r/b.

6. Estimation of I 0/M0

The purpose is now to numerically estimate the
perturbations (102) and (104) and to put bounds on
them in the general non-hydrostatic framework. Let
us first decompose ξr as

ξr = ξh + ξd , (133)

where ξh is the degree 2 order 0 component which cor-
responds approximately to the hydrostatic ellipticity.

r —> 0~ cst
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ξd is related to the deviatoric part of the stress tensor.
Integrating by parts the term of (102) containing ξ2

d
yields:

δM = δhM+ δdM, (134)

with

δhM =
∫

V
ρ
ξh

r

(

2∂rξh + ξh

r

)

dV,

δdM =
∫

V
δ,ρ div(ξher ) dV +

∫

V
δ,ρ div(ξder ) dV

−
∫

V
∂rρ

ξ2
d

r
dV −

∑

rΣ

∫

Σ
[ρ]

ξ2
d

rΣ
dΣ, (135)

where the rΣ are the radii of the interfaces.
The term δhM, which corresponds to the hydro-

static shape, is positive and has been calculated in
Section 5.3.

By using the approximation ξh ) hϕ(b)(r/b)p0
2,

we see that the first integral in δdM involves the
product of 3hϕ(b)/b by the integral of the degree
2 order 0 coefficient of δ,ρ. This last term is a pri-
ori oscillating with the radius and is of the order of
ρξd/r , i.e. much smaller than ρhϕ(b)/b. Hence the
whole term is much smaller than (hϕ(b)/b)2 ) 10−6

in relative value toM. In fact, we choose to take the
last integral in δdM as an upper bound for this term.
The second integral is a priori of the order of mag-
nitude of the last two terms. One may note that since
the two fields δ,ρ and div(ξder ) are probably not well
correlated, compensations can occur in the integral,
while the last two integrals contain only negative
terms.

These last two integrals both depend on the radial
variation of the density and on the spherical quadratic
norm of ξd . The main term corresponds to the sur-
facic term, since the radial variation of density mostly
occurs at interfaces. Let us note that this term, which
corresponds to a piecewise homogeneous Earth, can
also be deduced with the simple method given by
Balmino (1994). Denoting

δΣM = −
∫

Σ
[ρ]

ξ2
d

rΣ
dΣ, (136)

a reasonable upper bound is thus

|δdM| ≤ 4δΣM. (137)

It remains to estimate δΣM, which can be rewritten as

δΣM = −4π
∑

r=rΣ

rΣ [ρ](ξ2
d )|0. (138)

The different values of the RMS
√

(ξ2
d )|0 can be prac-

tically evaluated from interface models, either by di-
rect integration over the sphere or by summing up the
squared spherical harmonics coefficients, according
to the way the models are specified. It yields 0.63 km
for the external topography and 2.51 km for the solid
topography with model JGP95E, 12.2 km for the
Moho with CRUST5.1 (Mooney et al., 1998), 4.8–6.0
and 7.2 km for the 410 and 660 km discontinuities
with Flanagan and Shearer (1998, 1999) models. We
suppose that for the CMB, this value does not exceed
1 km. This set of values leads to

δΣM

M
≤ 1.1 × 10−6. (139)

In the same way, and with similar notations, we can
infer that

|δdI| ≤ 4δΣI, (140)

with

δΣI = −16π
3

∑

r=rΣ

r3
Σ [ρ](ξ2

d )|0. (141)

Hence

δΣI

I
≤ 4.1 × 10−6. (142)

Moreover, using (138) and (141), it is straightforward
to show that

0 <
δΣI

I
<

4
3
Mb2

I

δΣM

M
, (143)

and that the second inequality is numerically not far
from an equality. This suggests that in δd(I/M), there
is a compensation between perturbations correspond-
ing to the last two positive terms of (135) in such a
way that
∣

∣

∣

∣

δd(I/M)

I/M

∣

∣

∣

∣

≤ 2
(

∣

∣

∣

∣

δΣI

I
− δΣM

M

∣

∣

∣

∣

+ δΣI

I
+ δΣM

M

)

= 4 max
(

δΣI

I
,
δΣM

M

)

≤ 1.64 × 10−5.

(144)
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Since the hydrostatic elliptic term is dominant in
the Earth’s shape and can be precisely determined
relatively independently from the mean model, we
think that it is worthwhile to correct I/M from
the corresponding second-order term (132). The
non-hydrostatic terms correspond to a theoretical error
due to the looseness of the mean model concept and
must be added to the observational error. It leads to

d(I0/M0)

I0/M0
= d(I/M)

I/M
+

∣

∣

∣

∣

δd(I/M)

I/M

∣

∣

∣

∣

≤ 2.3 × 10−5, (145)

I0

M0
= I

M

(

1 − δh(I/M)

I/M

)

= (1.342 354 ± 0.000 031) × 1013 m2. (146)

The inertia coefficient I0/M0b
2 can easily be

deduced from these values (see Table 6). Note that
due to the large uncertainties on M and I, only the
ratios need to be corrected for second-order terms.

7. Secular variations

With the development of geodetic observations, it is
becoming usual to estimate the temporal variations of
global data. Let us thus consider the secular evolution
of the parameters related to mean models.

As far as we know, no temporal variation of GM
or b has been observed yet. Variation of J2 has al-
ready been discussed in Section 3.4.3, while those of
G and H are yet under the observational uncertainties
(Chovitz, 1988; Dehant and Capitaine, 1996). These
change rates are related to those of mass and inertia by

∂tM

M
= ∂t (GM)

GM
− ∂tG

G
, (147)

∂t (I/M)

I/M
= ∂tI

I
− ∂tM

M

= ∂t J2

J2
− ∂tH

H

1
1 − (2/3)H

. (148)

Since the order of magnitude of the meteoritic flux is
10−17M per year, the Earth’s mass variation rate is
negligible. Therefore, M can be considered as con-
stant (∂tM = 0) and the variations of I are due to the

mass redistribution. Let v be the velocity field inside
the Earth, then

∂tI = 2
3

∫

V
ρ

dx2

dt
dV = 4

3

∫

V
v · x dm, (149)

and thus

∂t (I/M)

I/M
= ∂tI

I
= 4

3b

Mb2

I

1
Mb

∫

V
v · x dm. (150)

Taking |(1/Mb)
∫

V v · x dm| ≤ 1 cm per year gives
|∂tI/I| ≤ 6.3 × 10−9 per year, which is about four
times less than ∂t J2/J2 and very small with respect
to its own uncertainty. Thus, we expect ∂tH/H to be
negative and of the order of ∂t J2/J2.

We can conclude that over a few decades, the varia-
tion of the parameters is small with respect to their un-
certainties, except for J2 that needs a slight correction.

8. Conclusion

The observed Earth’s mass and inertia have the
same relative uncertainty (1.5 × 10−3) as the gravita-
tional constant. The inertia ratio I/M, determined by
the zero-tide gravity coefficient J z

2 and the precession
constantH, is known with more accuracy (6.6×10−6).

A mean Earth model has been defined as the spher-
ical Lagrangian mean of the real Earth. The corre-
sponding mean radius is b = 6 371 230 ± 10 m. We
estimate the data I0, M0, I0/M0 associated with
this spherical average by a mathematical second-order
shape perturbation. Due to the large uncertainty on
G, only I0/M0 needs to be corrected with respect
to I/M; it is corrected from hydrostatic ellipticity
(6.7 × 10−6 in relative value), while non-hydrostatic
terms are added to the observational error (up to
2.3 × 10−5). M0 and I0/M0 are independent data,
while I0 and M0 are strongly correlated. The likely
improvement on the accuracy of the measure of G

would directly affect the accuracy of M0. How-
ever, theoretical errors on M0 will probably remain
negligible for the near and not-so-near future.

In Table 5, the observational errors, the hydrostatic
and the non-hydrostatic perturbations are compared. It
shows that the aspherical perturbations are significant
for the ratios I/M and I/Mb2 and that their theoret-
ical errors are slightly greater than the observational
errors.
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Table 5
Corresponding to the parameters of the first line, the columns contain respectively from top to bottom, in relative values, the final uncertainty
(observational + theoretical error), the observational error, the upper bound of the second-order term related to non-hydrostaticity, the
hydrostatic ellipticity correction, and the influence of a 230 m change in the radius

Data b M I I/Mb2 I/M

Final uncertainty 1.6 × 10−6 1.5 × 10−3 1.5×10−3 2.6×10−5 2.3×10−5

Measurement error 1.6 × 10−6 1.5 × 10−3 1.5×10−3 9.7×10−6 6.6×10−6

Non-hydrostatic error 0 4.4 × 10−6 16.4×10−6 16.4×10−6 16.4 ×10−6

Ellipticity correction 0 2.7 × 10−6 9.4×10−6 6.7×10−6 6.7×10−6

Influence of δb = 230 m 3.6 × 10−5 0 0 7.2×10−5 0

Table 6
Summary of the data for the real Earth and for the reference Earth modela

Data Symbol Value (uncertainty) Unit Relative uncertainty

Real Earth
Equatorial radius ae 6.378 137 (3) 106m 4.7 × 10−7

Geocentric gravitational constantb GM 3.986 004 415 (40) 1014 m3 s−2 1.0 × 10−8

Gravitational constant G 6.673 (10) 10−11 m3 kg−1 s−2 1.5 × 10−3

Mass M 5.9 733 (90) 1024 kg 1.5 × 10−3

Angular velocity Ω 7.2921150 (1) 10−5 rad s−1 1.4 × 10−8

Tide-free dynamic form factorc J n
2 1.0 826 264 (5) 10−3 4.6 × 10−7

Zero-frequency dynamic form factorc J z
2 1.0 826 357 (5) 10−3 4.6 × 10−7

Precession constant H 3.27 379 (2) 10−3 6.1 × 10−6

Polar inertia coefficientb C/Ma2
e 0.330 698 (2) 6.6 × 10−6

Second equatorial inertia coefficientb B/Ma2
e 0.329 619 (2) 6.6 × 10−6

First equatorial inertia coefficientb A/Ma2
e 0.329 612 (2) 6.6 × 10−6

Inertia coefficientd I/Ma2
e 0.329 976 (2) 6.6 × 10−6

Inertia coefficientd I/Mb2 0.330 692 (3) 9.7 × 10−6

Mean inertia ratiod I/M 1.342 363 (9) 1013 m2 6.6 × 10−6

Mean inertia I 8.018 (12) 1037 m2 kg 1.5 × 10−3

Reference earth model
Mean solid topography h|0 233 (7) 102m 3.0 × 10−2

Mean geoidal radius R 6 370 994.4 (3.0) 106m 4.7 × 10−7

Physical radius b 6 371 230 (10) 106m 1.6 × 10−6

Mass M0 5.9 733 (90) 1024 kg 1.5 × 10−3

Inertia I0 8.018 (12) 1037 m2 kg 1.5 × 10−3

Inertia ratiod I0/M0 1.342 354 (31) 1013 m2 2.3 × 10−5

Inertia coefficientd I0/M0b
2 0.330 690 (9) 2.6 × 10−5

Inertia coefficientd I0/M0R
2 0.330 714 (8) 2.4 × 10−5

Second radial density momente ρ2 5 514 (8) 103 kg m−3 1.5 × 10−3

Fourth radial density momentf ρ4 4 558 (7) 103 kg m−3 1.5 × 10−3

a The values in parentheses are the uncertainties referred to the last figures of the nominal values.
b With atmosphere.
c Related to values of GM and ae of this table and referred to year 2000.
d Without atmosphere.
e ρ2 = 3M0/4πb3.
f ρ4 = 15I0/8πb5.

.
.
.

.

.
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Table 6 summarizes all the values and uncertainties
given in the text. The values for I/M and I0/M0
differ from those given by Romanowicz and Lam-
beck (1977), and Khan (1983) by several standard
deviations.
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Appendix A

For l = 1, it is straightforward to show that x1 =
cst and x2 = 0. In order to prove (124) for l ≥ 2, let
us define

x(r) = x2(r)

x1(r)
. (A.1)

The definition is a posteriori justified by the fact that
x remains finite, i.e. x1 does not vanish. The x verifies
the differential equation:

dx

dr
= 1

r
(k2 + 3(1 − 2γ )x − x2), (A.2)

which can be reformulated as

dx

dr
= −1

r
(x − x+)(x − x−), (A.3)

with

x± = 1
2

(

3(1 − 2γ ) ±
√

9(1 − 2γ )2 + 4k2
)

. (A.4)

It yields:

∂x+
∂γ

= −6x+
√

9(1 − 2γ )2 + 4k2
. (A.5)

Since x+ ≥ 0, x+ is a decreasing function of γ , and
thus for any r:

0 < x+(γ = 1) = l − 1 ≤ x+(r) ≤ x+(γ0)

= p ≤ x+(γ = 0) = l + 2. (A.6)

The relation x−x+ = −(l −1)(l +2) shows that x−
is a negative increasing function of γ and that

−(l + 2) ≤ x−(r) ≤ −(l − 1) < 0. (A.7)

At the center, γ (r = 0) = 1, so that x+ = l−1, x− =
−(l + 2) and by virtue of condition (120), x(0) =
l − 1. Noting that dx/dr ≥ 0 for x ∈ [x−, x+] and
dx/dr < 0 outside, we finally conclude that x(r)

remains in the interval [l − 1, p].
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