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On prendra G = 6, 673.10−11 m3 kg−1 s−2 pour valeur de la constante de gravitation.

I. Questions indépendantes (5/10)

1. Qu’est-ce que le géoïde, quelles sont ses propriétés ?

2. Pourquoi les planètes sont-elles aplaties aux pôles ? Quelle est la valeur de l’apla-

tissement de la Terre ?

3. On donne ci-dessous une carte de l’anomalie à l’air libre de la région d’Olympus

Mons, un volcan martien dont le sommet culmine à plus de 22 km au dessus de sa base.

La topographie d’Olympus Mons est-elle compensée (on demande un calcul très simple) ?

L3 Géosciences 2014 / 2015

d’Olympus Mons d’après le modèle MGM2011.
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1. Le champ de gravité à la surface de Mars a été estimé grâce à la sonde Mars Global Surveyor.
Expliquez qualitativement le principe de mesure des anomalies de gravité à la surface d’une planète
à partir d’une sonde en orbite.

Olympus Mons a une forme proche d’un cône de révolution, et on le modélise par un cône de hauteur
h = 22 km et de rayon à sa base Rb = 300 km. On va obtenir l’attraction de gravité au sommet de ce cône
en le décomposant en une superposition de plateaux cylindriques d’épaisseur dz, dont on sommera ensuite
les contributions.

2. Soit �g la gravité sur l’axe du cône. Pourquoi �g est-il dirigé suivant l’axe des z ? On notera �g = −g�ez.
Exprimer r′ et cos� en fonction de r et z.

3. Rappeler quelle est l’expression générale de la gravité �g d’un corps occupant un volume V en fonction
de sa densité.

4. En déduire que la gravité sur l’axe d’un cylindre de rayon R(z) et d’épaisseur dz est donnée par

dg = G⇢dz� 2⇡

0
� R

0

z(z2 + r2)3�2 rdrd✓.

5. En calculant l’intégrale, montrez que

dg = 2⇡G⇢ �1 − z(z2 +R2)1�2 �dz.

6. Exprimer R en fonction de Rb et z, et intégrez l’expression précédente en z pour en déduire que
l’attraction au sommet du cône est donnée par

g = 2⇡G⇢h�����1 −
1�

1 + (Rb�h)2
�����

7. Quelle formule retrouve t’on si l’on fait tendre Rb�h vers l’infini ?
8. Comparez l’anomalie observée avec la prédiction du modèle. On pourra prendre ⇢ = 2900 kg.m−3,G = 6.6710−11 m3.kg−1.s−2.

La topographie d’Olympus Mons est-elle compensée ? Discutez qualitativement de ce que cela im-
plique pour la croûte Martienne.

2/2 renaud.deguen@univ-lyon1.fr

Figure 1 – Anomalies à l’air libre (mGal) de la région d’Olympus Mons.

II. Rebond post-glaciaire (5/10)

1. Avec le système de satellites Grace, on a pu mesurer les variations temporelles

de pesanteur sur Terre. Quel peut-être le principe de mesure d’un tel système ?

2. On donne dans la figure 2-haut ces variations dans la Baie d’Hudson et dans la

figure du bas l’évolution du niveau de la mer relatif mesuré au point d’observation b, dit

Golfe de Richmond. Calculer à quelle vitesse de remontée crustale au niveau du Golfe de

Richmond correspond la variation temporelle de pesanteur observée.

3. Comparer avec la variation du niveau de la mer en ce point. À votre avis, en

quoi les deux observations sont-elles complémentaires et non redondantes ?

— o —

Texte disponible à http://frederic.chambat.free.fr/ens
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Figure 3. Secular GRACE gravity signal over Hudson Bay (a) and its errors (b), and two forward models using ICE-5G (c) and ICE-3G (d). All plots have
units of µGal yr−1. The forward models are produced using the viscosity profiles optimized for ICE-5G (Peltier 2004) and ICE-3G (Tushingham & Peltier
1991), respectively. Hydrological contributions have been removed using output from the GLDAS/Noah land surface model (Rodell et al. 2004). The dashed
line in Fig. 3(b) bounds the region used to compare with PGR model predictions; it follows the 1.0 µGal yr−1 contour from Fig. 3(a).

of those models (viscosity model VM2 (Peltier 2004) is used here
for the ICE-5G results). There is reasonable agreement between the
ICE-5G and GRACE results, though the Gaussian smoothing has
sharply reduced the amplitude of the ICE-5G maximum southeast of
Hudson Bay. None of the GRACE data were used in the construction
of ICE-5G, which makes this agreement particularly satisfying. The
ICE-3G results, on the other hand, differ significantly from those of
GRACE, particularly in the amplitude of the maximum just west of
Hudson Bay. This illustrates one of the most promising future ap-
plications of GRACE for PGR studies: helping to constrain the ice
model. That application is beyond the scope of this paper, however.

The GRACE-model comparisons described below are done by
summing the difference in predicted and observed gravity rates over
an equal-area grid of 200 points, distributed within the heavy dashed
line shown in Fig. 3(b). That line marks the contour of 1.0 µGal yr−1

in the GRACE trend (Fig. 3a). We use this restricted region to min-
imize contamination from external gravity trends unrelated to the
Canadian PGR signal (e.g. variations in water/snow/ice in Canada
and Alaska, and PGR and present-day ice mass signals in Green-
land). The restriction to this relatively small region also makes our
results less sensitive to errors in the spatial pattern of the deglacia-
tion model. The disadvantage of using a small region, is that we

are then also less able to distinguish between different spatial pat-
terns predicted for different viscosity profiles. Instead, our GRACE
constraint reduces mostly, though not entirely (see below), to a con-
straint on the amplitude of the gravity trend.

The GRACE-model comparisons require an estimate of the er-
rors in the GRACE trends. First, we estimate the uncertainty in the
monthly values of each individual Stokes coefficient, by removing a
constant and an annually varying term from the time-series of each
coefficient, and interpreting the residuals as a measure of the error
(Wahr et al. 2006). This tends to be an overestimate of the errors,
since some of the non-annual variability is certainly a real signal.
The monthly uncertainties are then used to determine the uncertainty
in the trend of each Stokes coefficient. By assuming the errors in dif-
ferent Stokes coefficients are uncorrelated, we are able to combine
the Stokes coefficient uncertainties to obtain an uncertainty in the
gravity field trend at each point in the latitude/longitude domain (see
Wahr et al. 2006, eq. 4). The resulting spatial error field is shown in
Fig. 3(b): a uniform increase in error with decreasing latitude. This
pattern is an oversimplification of the true error pattern, due to our
assumption that the errors in different Stokes coefficients are uncor-
related. The overall error magnitudes, though, are well represented
by the results shown in Fig. 3(b).
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Figure 1. Sites of RSL measurements used in this study. Place names are: (a)
James Bay, (b) Richmond Gulf, (c) Ottawa Island, (d) Churchill, Manitoba,
(e) Boothia Peninsula and (f) Melville Peninsula.

provided in the database are converted to sidereal time with the INT-
CAL04 calibration table, which is based on a sample set of dated
tree rings, U-Th dated corals and varve-counted marine sediment
(Stuiver et al. 1998). Finally, we remove from the data the bias in-
troduced by glacial meltwater entering the oceans, as given by the
ICE-5G glaciation model.

All the sites considered in this study (Fig. 1) are near the centre of
the Laurentide ice-sheet. Although included in preliminary exper-
imentation, sites at the periphery of the loaded region are omitted
in our final analysis. These sites tend to have small amplitudes and
more complicated RSL histories due to migration of the PGR fore-
bulge and to non-local viscosity sensitivity (Paulson et al. 2005);
they also tend to have much less constraining power on mantle vis-
cosity than do the Hudson Bay sites.

Predictions from PGR models are sensitive to errors in the ice
history. It is desirable to compare with data in a way that minimizes
the impact of those errors. To this end, Mitrovica & Peltier (1995)
propose two methods for analysing RSL data: (1) scaling away their
amplitude, to give a time-series for what they termed ‘normalized
relative sea level’, or normalized relative sea level (NRSL) and (2)
fitting an exponential form to the RSL curve and extracting the de-
cay time (see, also, Mitrovica 1996; Peltier 1996; Mitrovica & Forte
2004). The use of decay times is associated with several difficul-
ties, demonstrated by the plethora of highly inconsistent estimates
of decay times. For example, Mitrovica et al. (2000) in a meticulous
study of the RSL data obtain decay times of 5.3 ± 1.3 and 2.4 ±
0.4 kyr at Richmond Gulf and James Bay, respectively, to replace ear-
lier estimates of 3.4 kyr for all of southeastern Hudson Bay (Peltier
1998) or 7.6 kyr for Richmond Gulf (Peltier 1994). The reasons for
the high variability in the best-fitting exponential form are plenti-
ful: data points are often subjectively included or excluded from the
RSL record, gaps in the RSL record occur frequently, methods of
decay time estimation are themselves highly variable (compare, for
example, Dyke & Peltier 2000; Mitrovica et al. 2000), RSL data
at neighbouring sites have been grouped or binned inconsistently
(Mitrovica et al. 2000), and the meltwater contribution to the RSL
history imposes a dependence on the ice model used. For these rea-
sons, we avoid the use of decay times for this study.

Instead, we apply a method similar to Mitrovica & Peltier (1995)’s
NRSL. NRSL involves scaling a modelled RSL curve so that it
fits the amplitude of the RSL data, and then computing a misfit
between the RSL data and the scaled model results. The overall

amplitude of an RSL curve is strongly dependent on the thickness of
deglaciated ice in that region, and so scaling the RSL curve removes
that dependence. It is then primarily the curvature of the RSL curve
that governs the misfit, and the curvature is much more dependent
on the viscosity profile than on the ice history. This is the same
rationale for using exponential decay times. However, NRSL is less
sensitive to many of the difficulties that complicate the use of those
decay times.

Our analysis method differs from Mitrovica & Peltier (1995)’s
NRSL by imposing a limit on the amount of scaling allowed. Since
typical RSL data often have a large time-dependent scatter, allow-
ing an arbitrarily large or small scaling of the model output (that is,
scaling of the RSL curves) can lead to reasonable fits to the data by
absurdly exotic viscosity structures. For example, an extremely stiff
mantle (greater than 1024 Pa s) would lead to a very small amplitude
and near-linear RSL history. For some sites with highly variable RSL
data, a sufficiently high scaling of this model RSL curve can bring
it into reasonable accordance with the data, even though it should
be safe to reject models that would require several times thicker ice
than is provided by the glaciation model. In this study, we use a
normalized RSL approach that allows for scaling of the ice model
only within some pre-defined limit, chosen to lie between 10 and
50 per cent. For example, suppose we believe the ice model’s thick-
ness is uncertain to 20 per cent. We then scale the model RSL curve
by the optimal amount, but keeping the scaling within the range of
0.8–1.2, and then computing the misfit to the RSL data. ‘Optimal,’
in this case, means the scaling that provides the smallest misfit. Thus
model data that are scaled to match the RSL amplitude end up fitting
only the shape of the RSL curve, but with limits on the scaling so that
we reject viscosity profiles that require an unrealistic ice thickness.
Note that by scaling the model RSL curves we are accommodating
an uncertainty in the ice model without actually changing the ice
model, only the model output data. A similar technique is applied
to GRACE data, as described below.

RSL data for the six sites are shown in Fig. 2. It is apparent that
the scatter in the data is not consistent with the relatively small error
bars. This appears to be a feature of most RSL data sets. The lines
in Fig. 2 show two typical forward-model RSL curves for each site
(these are the models labelled I and II in Section 5). The misfit of
a given RSL curve to the data is computed in a manner similar to
that used by Mitrovica et al. (2000). For each point in the RSL data,
with time t i and sea level s i , the nearest point on the model curve
is found (T i , Si ), and that point is given an error of

χ 2
j = 1

N

N∑

i=1

σ 2
i = 1

N

N∑

i=1

[(
si − Si

δsi

)2

+
(

ti − Ti

δti

)2
]

, (1)

where δs i and δt i are the errorbars on data point i, and N is the
number of data points in the RSL data at the given site. A sin-
gle number for the misfit for all RSL data, χ2

RSL, is computed as
the average of the χ 2

j for each of the six RSL sites around Hudson
Bay.

2.3 GRACE

The GRACE satellite mission, launched in March 2002, recovers
global, monthly solutions for the Earth’s gravity field down to scales
of a few hundred kilometres (Tapley et al. 2004). These solutions can
be used to estimate the secular change in the gravity field, which can
then be compared with PGR predictions. This constraint is similar to
the J̇2 constraint provided by SLR. However, unlike for J̇2, the much
shorter spatial resolution available from GRACE makes it possible
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Figure 2. RSL data at the sites shown in Fig. 1 (points with error bars). The lines show the results of two forward models: model I (solid line) with ηUM =
5.3 × 1020 Pa s and ηLM = 2.3 × 1021 Pa s for the upper and lower mantle viscosities, respectively; and model II (dashed line) with ηUM = 4.3 × 1019 Pa s and
ηLM = 6.6 × 1022 Pa s.

to separate the secular signal over northern Canada from secular
signals elsewhere.

We use fields based on Release 4 solutions from the University of
Texas, for 53 months between April 2002 and December 2006. The
solutions are in the form of spherical harmonic (Stokes) coefficients,
C lm and Slm. These fields have been post-processed to reduce noise
and artificial vertical stripes in the data, using the method described
by Swenson & Wahr (2006). We simultaneously fit a constant, a
linear trend, and an annually varying term to the time-series of each
coefficient. We transform into the spatial domain to obtain secular
changes in gravity on an equal-area grid. The results are smoothed
to reduce noise using a Gaussian smoothing function of 400 km
half-width (eqs 32–34 Wahr et al. 1998). Fig. 3(a) shows results in
the vicinity of Hudson Bay. A large-amplitude anomaly, of about
2.5 µGal yr−1, is spread out over ∼3000 km around Hudson Bay,
with a broad maximum just west of Hudson Bay and a secondary
maximum southeast of it. We interpret this anomaly as a PGR signal.

GRACE has no vertical resolution, and so can not distinguish
between a PGR signal in the solid Earth and a linear trend in water

storage in this region. Since we are using only 4.5 yr of GRACE
data, water storage variability at multiyear periods could affect our
trend estimates. To reduce this problem we remove the water stor-
age gravity trend for the same 4.5-yr period predicted from the
GLDAS/Noah land surface model (Rodell et al. 2004), before con-
structing the smoothed results shown in Fig. 3(a). The predicted
water storage trend in this region is small, only about 10 per cent of
the total GRACE trend.

The GRACE secular gravity estimates will be compared below
with PGR predictions for many viscosity profiles, to help determine
the best-fitting viscosity. To make the model predictions directly
comparable to the GRACE estimates, each predicted gravity field
is first destriped as described by Swenson & Wahr (2006) and then
smoothed with a 400 km Gaussian, just as we do to obtain the
GRACE results.

First, though, Figs 3(c) and (d) show the trend in gravity (af-
ter destriping and smoothing) predicted using de-glaciation models
ICE-5G (Peltier 2004) and ICE-3G (Tushingham & Peltier 1991),
together with the same viscosity profiles used in the construction
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Figure 2 – En haut : variations temporelles de pesanteur en µGal/an. En bas, gauche :

sites de mesures du niveau de la mer relatif. A droite : niveau de la mer relatif au site

de mesure b (Golfe de Richmond) en mètres en fonction du temps en millier d’années

(actuel = 0) ; les points représentent les mesures, les courbes deux différents modèles de

rebond. Source : Paulson et al., 2007, G.J.I. 171.


